题目内容

11.设数列a1、a2、…、an中的每一项都不为0,求证:
(1)若{an}成等差数列,则$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{n}{{a}_{1}{a}_{n+1}}$;
(2)若$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{n}{{a}_{1}{a}_{n+1}}$,则{an}成等差数列.

分析 (1)由{an}成等差数列,设公差为d,则$\frac{1}{{a}_{n}{a}_{n+1}}=\frac{1}{d}(\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}})$,利用“裂项求和”即可证明;
(2)利用数学归纳法与等差数列的通项公式即可证明.

解答 证明:(1)∵{an}成等差数列,设公差为d,则$\frac{1}{{a}_{n}{a}_{n+1}}=\frac{1}{d}(\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}})$,
∴$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{d}[(\frac{1}{{a}_{1}}-\frac{1}{{a}_{2}})+(\frac{1}{{a}_{2}}-\frac{1}{{a}_{3}})$+…+$(\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}})]$=$\frac{1}{d}(\frac{1}{{a}_{1}}-\frac{1}{{a}_{n+1}})$=$\frac{1}{d}•\frac{{a}_{n+1}-{a}_{1}}{{a}_{1}{a}_{n+1}}$=$\frac{n}{{a}_{1}{a}_{n+1}}$;
∴$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{n}{{a}_{1}{a}_{n+1}}$;
(2)利用数学归纳法证明:
(i)当n=2时,∵$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$=$\frac{2}{{a}_{1}{a}_{3}}$,∴a1+a3=2a2,∴a1,a2,a3成等差数列;
(ii)假设n≤k(k≥2),{ak+1}成等差数列.
则当n=k+1时,$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{k}{a}_{k+1}}+\frac{1}{{a}_{k+1}{a}_{k+2}}$=$\frac{k}{{a}_{1}{a}_{k+1}}+\frac{1}{{a}_{k+1}{a}_{k+2}}$=$\frac{k+1}{{a}_{1}{a}_{k+2}}$,
化为kak+2+a1=(k+1)ak+1
∴kak+2=(k+1)[a1+kd]-a1
化为ak+2=a1+(k+2-1)d,
因此当n=k+1时,数列{ak+2}成等差数列.
综上可得:?n∈N*,(n≥3),数列{an}成等差数列.

点评 本题考查了等差数列的通项公式及其性质、数学归纳法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网