题目内容
【题目】已知是各项均为正数的等比数列,且满足,,等差数列满足,.
(Ⅰ)分别求数列,的通项公式;
(Ⅱ)记数列的前项和为,若对任意的,恒成立,求实数的取值范围.
【答案】(Ⅰ);;(Ⅱ).
【解析】
(Ⅰ)在各项均为正数的等比数列中,将已知两个关系式中各项都由等比数列通项公式转化为首项与公比,进而求得首项与公比,并写出该数列通项公式;在等差数列中,由等差数列性质求得公差,进而求得首项,即可写出该数列通项公式;
(Ⅱ)由(Ⅰ)求得数列的前项和,将其带入已知不等式,进而参变分离转化不等式,再令,分析其数列的增减性,求得最值,即可求得答案.
(Ⅰ)设正数等比数列的公比为,由题意得
,∴
又由题意得,∴,且
∴;
(Ⅱ)由(Ⅰ)得数列的前项和,
∴对恒成立,即对恒成立,
令,,
当时,,数列为递增数列;当时,,数列为递减数列,
∴,故.
练习册系列答案
相关题目