题目内容
(2009•大连一模)在平面直角坐标系中,不等式组
所表示的平面区域的面积是4,动点(x,y)在该区域内,则x+2y的最小值为( )
|
分析:作出题中不等式组表示的平面区域,得如图的△AB0及其内部,根据三角形的面积计算出a=2,再将目标函数z=x+2y对应的直线进行平移,可得当x=2,y=-2时,z=x+2y取得最小值-2.
解答:解:作出不等式组
表示的平面区域,
得到如图的△ABO及其内部,其中A(a,a),B(a,-a),O(0,0)
∵△ABO的面积S=
×2a×a=4,即a2=4,解之得a=2
设z=F(x,y)=x+2y,将直线l:z=x+3y进行平移,
当l经过点B时,目标函数z达到最小值
∴z最小值=F(2,-2)=-2
故选:B
|
得到如图的△ABO及其内部,其中A(a,a),B(a,-a),O(0,0)
∵△ABO的面积S=
1 |
2 |
设z=F(x,y)=x+2y,将直线l:z=x+3y进行平移,
当l经过点B时,目标函数z达到最小值
∴z最小值=F(2,-2)=-2
故选:B
点评:本题给出二元一次不等式组,求参数a的取值,并求目标函数z=x+2y的最小值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.
练习册系列答案
相关题目