题目内容
9.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T0,经过一定时间t后的温度是T,则T-Ta=(T0-Ta)•$(\frac{1}{2})^{\frac{t}{h}}$,其中Ta称为环境温度,h称为半衰期.现有一杯用88℃热水冲的速溶咖啡,放在24℃的房间中,如果咖啡降到40℃需要20分钟,那么此杯咖啡从40℃降温到32℃时,还需要10分钟.分析 由题意直接利用已知条件求解函数的解析式,然后求解即可.
解答 解:设物体的初始温度是T0,经过一定时间t后的温度是T,则T-Ta=(T0-Ta)•$(\frac{1}{2})^{\frac{t}{h}}$,其中Ta称为环境温度,h称为半衰期.现有一杯用88℃热水冲的速溶咖啡,放在24℃的房间中,如果咖啡降到40℃需要20分钟,
可得Ta=24,T0=88,T=40,
可得:40-24=(88-24)${(\frac{1}{2})}^{\frac{20}{h}}$,解得h=10,
此杯咖啡从40℃降温到32℃时,可得:32-24=(40-24)${(\frac{1}{2})}^{\frac{t}{10}}$,解得t=10.
故答案为:10.
点评 本题考查函数的值的求法,函数与方程的应用,考查计算能力.
练习册系列答案
相关题目
17.在△ABC中,三个内角A,B,C所对的边为a,b,c,若S△ABC=2$\sqrt{3}$,a+b=6,$\frac{acosB+bcosA}{c}$=2cosC,则
c=( )
c=( )
A. | 2$\sqrt{7}$ | B. | 4 | C. | 2$\sqrt{3}$ | D. | 3$\sqrt{3}$ |
1.命题p:y=|sinx|是偶函数,命题q:y=sin|x|是周期为π的周期函数,则下列命题中为真命题的是( )
A. | p∧q | B. | p∨q | C. | (¬p)∧q | D. | (¬p)∨q |
19.以(1,2)为圆心,$\sqrt{5}$为半径的圆的方程为( )
A. | x2+y2-2x+4y=0 | B. | x2+y2+2x+4y=0 | C. | x2+y2-2x-4y=0 | D. | x2+y2+2x-4y=0 |