题目内容
【题目】已知函数.
(Ⅰ)若曲线在点处的切线与直线垂直,求实数的值;
(Ⅱ)若函数在其定义域上是增函数,求实数的取值范围;
(Ⅲ)当时,函数的两个极值点为,且,若不等式恒成立,求实数的取值范围.
【答案】(Ⅰ);(Ⅱ) ;(Ⅲ) .
【解析】试题分析:(Ⅰ)求出函数的导数,计算的值,求出的值即可;(Ⅱ)求得导数,由题意可得在恒成立,即有的最小值,运用基本不等式可得最小值,即可得到的范围;(Ⅲ)函数在上有两个极值点,方程有两个不等的正根,求得两根,求得范围;不等式恒成立即为,而,设,求出导数,判断单调性,即可得到的最小值,即可求得的范围.
试题解析:(Ⅰ) ,所以,依题意知, ,所以.
(Ⅱ)函数的定义域是,若函数在其定义域上是增函数,则在区间上恒成立,即在区间上恒成立,因为,当且仅当时等号成立,所以,因此实数的取值范围是.
(Ⅲ)由(Ⅱ)知, ,因为的两个极值点为,且,所以是方程的两个根,所以, ,不等式恒成立,即恒成立,而 ,由.所以,解得或,因为, ,所以舍去,所以.令, , ,所以函数在上是减函数,所以,故.
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费,并将各地的销售收益绘制成频率分布直方图(如图所示),由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
(1)根据频率分布直方图计算各小长方形的宽度;
(2)估计该公司投入4万元广告费之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值)
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入x(单位:万元) | 1 | 2 | 3 | 4 | 5 |
销售收益y(单位:万元) | 2 | 3 | 2 | 7 |
表格中的数据显示,x与y之间存在线性相关关系,请将(2)的结果填入空白栏,并计算y关于x的回归方程.
回归直线的斜率和截距的最小二乘法估计公式分别为 , .