题目内容
10.已知椭圆的两焦点为F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0),离心率e=$\frac{\sqrt{3}}{2}$.(Ⅰ)求此椭圆的方程.
(Ⅱ)若直线y=$\frac{x}{2}$+m与此椭圆交于M,N两点,求线段MN的中点P的轨迹方程.
分析 (Ⅰ)由题意可得:$\left\{\begin{array}{l}{c=\sqrt{3}}\\{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解出即可得出.
(Ⅱ)设M(x1,y1),N(x2,y2),MN的中点为P(x,y).可得$\frac{{x}_{1}^{2}}{4}+{y}_{1}^{2}=1$,$\frac{{x}_{2}^{2}}{4}+{y}_{2}^{2}$=1,两式相减并代入x1+x2=2x,y1+y2=2y,$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{1}{2}$,即可得出,由P在椭圆内部,可求得$-\sqrt{2}<x<\sqrt{2}$.
解答 解:(Ⅰ)由题意可得:$\left\{\begin{array}{l}{c=\sqrt{3}}\\{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得c=$\sqrt{3}$,a=2,b=1.
∴椭圆的方程为:$\frac{{x}^{2}}{4}+{y}^{2}=1$.
(Ⅱ)设M(x1,y1),N(x2,y2),MN的中点为P(x,y).
∴$\frac{{x}_{1}^{2}}{4}+{y}_{1}^{2}=1$,$\frac{{x}_{2}^{2}}{4}+{y}_{2}^{2}$=1.
两式相减得$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{4}$+(y1+y2)(y1-y2)=0.
又x1+x2=2x,y1+y2=2y,$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{1}{2}$,
∴$\frac{2x}{4}+2y×\frac{1}{2}$=0,化为x+2y=0.
∵P在椭圆内部,可求得$-\sqrt{2}<x<\sqrt{2}$.
∴线段MN的中点P的轨迹方程为x+2y=0,($-\sqrt{2}<x<\sqrt{2}$).
点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、“点差法”、中点坐标公式、斜率计算公式,考查了推理能力与计算能力,属于中档题.
A. | -1 | B. | 4 | C. | $\frac{22}{3}$ | D. | 8 |
A. | $[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$ | B. | $\left?{-\sqrt{3},\sqrt{3}}\right?$ | C. | $({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$ | D. | $({-\sqrt{3},\sqrt{3}})$ |
A. | [$\frac{\sqrt{5}}{5}$,1) | B. | [$\frac{\sqrt{5}}{5}$,1] | C. | ($\frac{2\sqrt{5}}{5}$,1) | D. | [$\frac{2\sqrt{5}}{5}$,1) |