题目内容
18.已知数列{an}的通项公式为an=2n×0.9n,求数列{an}中的最大项.分析 根据数列项的最大值的条件进行求解即可.
解答 解:设数列{an}中的最大项为an,
则满足$\left\{\begin{array}{l}{{a}_{n}≥{a}_{n+1}}\\{{a}_{n}≥{a}_{n-1}}\end{array}\right.$,
即$\left\{\begin{array}{l}{2n×0.{9}^{n}≥2(n+1)×0.{9}^{n+1}}\\{2n×0.{9}^{n}≥2(n-1)×0.{9}^{n-1}}\end{array}\right.$,
即$\left\{\begin{array}{l}{2n≥2(n+1)×0.9}\\{2n×0.9≥2(n-1)}\end{array}\right.$,
即$\left\{\begin{array}{l}{2n≥1.8n+1.8}\\{1.8n≥2n-2}\end{array}\right.$,
即$\left\{\begin{array}{l}{0.2n≥1.8}\\{0.2n≤2}\end{array}\right.$,
即$\left\{\begin{array}{l}{n≥9}\\{n≤10}\end{array}\right.$,
即9≤n≤10,
故当n=9或10时,数列an最大,最大为a9=a10=20×0.910
点评 本题主要考查数列的函数特性,根据数列最大项的条件,解不等式组是解决本题的关键.
练习册系列答案
相关题目
9.方程组$\left\{\begin{array}{l}{x+y=-1}\\{{x}^{2}-{y}^{2}=9}\end{array}\right.$,的解组成的集合是( )
A. | (5,4) | B. | (5,-4) | C. | {(-5,4)} | D. | {(5,-4)} |