题目内容

若圆x2+y2-4x-4y-10=0上至少有三个不同点到直线l:ax+by=0的距离为,则直线l的斜率的取值区间为   
【答案】分析:把圆的方程化为标准方程,找出圆心坐标和圆的半径,根据圆上至少有三个不同的点到直线l的距离等于2,得到圆心到直线的距离小于等于,利用点到直线的距离公式列出不等式,整理后求出的取值范围,根据直线的斜率k=-,即可得出斜率k的取值范围.
解答:解:圆x2+y2-4x-4y-10=0整理为
∴圆心坐标为(2,2),半径为3
要求圆上至少有三个不同的点到直线l:ax+by=0的距离为
则圆心到直线的距离应小于等于


,又

则直线l的斜率的取值区间为
故答案为:
点评:此题考查了直线和圆的位置关系,直线与圆相交的性质等知识,要求学生掌握圆的标准方程,点到直线的距离公式,以及直线斜率的求法,其中根据题意得出圆心到直线的距离应小于等于是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网