ÌâÄ¿ÄÚÈÝ
A£®Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²Èçͼ£¬Ô²O1ÓëÔ²O2ÄÚÇÐÓÚµãA£¬Æä°ë¾¶·Ö±ðΪr1Óër2£¨r1£¾r2 £©£®Ô²O1µÄÏÒAB½»Ô²O2ÓÚµãC £¨ O1²»ÔÚABÉÏ£©£®ÇóÖ¤£ºAB£ºACΪ¶¨Öµ£®
B£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÒÑÖª¾ØÕóA=
|
|
¦Á |
¦Á |
¦Â |
C£®Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Çó¹ýÍÖÔ²
|
|
D£®Ñ¡ÐÞ4-5£º²»µÈʽѡ½²£¨±¾Ð¡ÌâÂú·Ö10·Ö£©
½â²»µÈʽ£ºx+|2x-1|£¼3£®
·ÖÎö£ºA¡¢Èçͼ£¬ÀûÓà EC¡ÎDB£¬AB£ºAC=AD£ºAE=2r1£º2r2£¬Ö¤³ö½áÂÛ£®
B¡¢ÉèÏòÁ¿
=
£¬ÓÉ A2
=
£¬ÀûÓþØÕóµÄÔËËã·¨Ôò£¬Óôý¶¨ÏµÊý·¨¿ÉµÃx ºÍ y µÄÖµ£¬´Ó¶øÇóµÃÏòÁ¿
£®
C¡¢°ÑÍÖÔ²µÄ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬Çó³öÓÒ½¹µãµÄ×ø±ê£¬°ÑÖ±Ïß²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬Çó³öбÂÊ£¬Óõãбʽ
ÇóµÃËùÇóÖ±Ïߵķ½³Ì£®
D¡¢Ô²»µÈʽ¿É»¯Îª
£¬»ò
£¬·Ö±ð½â³öÕâÁ½¸ö²»µÈʽ×éµÄ½â¼¯£¬
Ôٰѽ⼯ȡ²¢¼¯£®
B¡¢ÉèÏòÁ¿
¦Á |
|
¦Á |
¦Â |
¦Á |
C¡¢°ÑÍÖÔ²µÄ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬Çó³öÓÒ½¹µãµÄ×ø±ê£¬°ÑÖ±Ïß²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬Çó³öбÂÊ£¬Óõãбʽ
ÇóµÃËùÇóÖ±Ïߵķ½³Ì£®
D¡¢Ô²»µÈʽ¿É»¯Îª
|
|
Ôٰѽ⼯ȡ²¢¼¯£®
½â´ð£º½â£ºA¡¢Èçͼ£ºÁ¬½ÓAO1²¢ÑÓ³¤£¬½»Á½Ô²ÓÚD£¬E£¬ÔòO2ÔÚADÉÏ£¬¸ù¾ÝÖ±¾¶¶ÔµÄÔ²ÖܽǵÈÓÚ90¡ã¿ÉµÃ£¬¡ÏACE=¡ÏABD=90¡ã£¬
¡àEC¡ÎDB£¬¡àAB£ºAC=AD£ºAE=2r1£º2r2=r1£ºr2 Ϊ¶¨Öµ£®
B¡¢A2=
=
£¬ÉèÏòÁ¿
=
£¬ÓÉ A2
=
¿ÉµÃ
=
£¬¡à
£¬½âµÃ x=-1£¬y=2£¬
¡àÏòÁ¿
=
£®
C¡¢ÍÖÔ²
£¨¦ÕΪ²ÎÊý£©µÄÆÕͨ·½³ÌΪ
+
=1£¬ÓÒ½¹µãΪ£¨4£¬0£©£¬
Ö±Ïß
£¨tΪ²ÎÊý£© ¼´ x-2 y+2=0£¬Ð±ÂʵÈÓÚ
£¬¹ÊËùÇóµÄÖ±Ïß·½³ÌΪ
y-0=
£¨x-4£©£¬¼´ x-2 y-4=0£®
D¡¢Ô²»µÈʽ¿É»¯Îª
£¬»ò
£¬
½âµÃ
¡Üx£¼
£¬»ò-2£¼x£¼
£¬¹Ê²»µÈʽµÄ½â¼¯Îª {x|-2£¼x£¼
}£®
¡àEC¡ÎDB£¬¡àAB£ºAC=AD£ºAE=2r1£º2r2=r1£ºr2 Ϊ¶¨Öµ£®
B¡¢A2=
|
|
|
¦Á |
|
¦Á |
¦Â |
|
|
|
|
¡àÏòÁ¿
¦Á |
|
C¡¢ÍÖÔ²
|
x2 |
25 |
y2 |
9 |
Ö±Ïß
|
1 |
2 |
y-0=
1 |
2 |
D¡¢Ô²»µÈʽ¿É»¯Îª
|
|
½âµÃ
1 |
2 |
4 |
3 |
1 |
2 |
4 |
3 |
µãÆÀ£º±¾Ì⿼²éÔ²ÓëÔ²µÄλÖùØϵ£¬²ÎÊý·½³ÌÓëÆÕͨ·½³ÌµÄ»¥»¯£¬¾ØÕóµÄÔËËã·¨Ôò£¬¾ø¶ÔÖµ²»µÈʽµÄ½â·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿