题目内容

14.若直线l过点A(1,-1)与已知直线l1:2x+y-6=0相交于B点,且|AB|=5,求直线l的方程.

分析 当直线斜率不存在时,符合题意;当直线有斜率时,设直线方程为y+1=k(x-1),联立方程组解交点,由距离公式可得k的方程,解方程可得.

解答 解:当直线斜率不存在时,方程为x=1,与直线l:2x+y-6=0相交于B(1,4),
由距离公式可得|AB|=5,符合题意;
当直线有斜率时,设直线方程为y+1=k(x-1),
联立方程组可得$\left\{\begin{array}{l}y+1=k(x-1)\\ 2x+y-6=0\end{array}\right.$,解得B($\frac{k+7}{k+2}$,$\frac{4k-2}{k+2}$),
由距离公式可得($\frac{k+7}{k+2}$-1)2+($\frac{4k-2}{k+2}$+1)2=25,解得k=-$\frac{3}{4}$,
∴所求直线的方程为y=-$\frac{3}{4}$x-$\frac{1}{4}$,即3x+4y+1=0
综上可得所求直线方程为:x=1或3x+4y+1=0.

点评 本题考查直线的一般式方程的求解,涉及截距式和分类讨论的思想,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网