题目内容
【题目】已知,函数.
(1)当时,画出函数的大致图像;
(2)当时,根据图像写出函数的单调减区间,并用定义证明你的结论;
(3)试讨论关于x的方程解的个数.
【答案】详见解析
【解析】
(1)当时,将函数化为,由此画出函数的图像.(2)根据(1)的图像写出函数的单调减区间,利用单调性的定义,通过计算,证得函数单调性.(3),由于,故函数图像与(1)中的图像类似.将方程解的个数问题转化为与图像的交点个数来解.将分成五种情况,讨论两个函数交点的个数.
(1)如图所示
(2)单调递减区间:
证明:设任意的
因为,所以
于是,即
所以函数在上是单调递减函数
(3) 由题意知方程的解得个数等价于函数的图像与直线的交点个数.即函数的图象与直线的交点个数
又,注意到,
当且仅当时,上式等号成立,借助图像知
所以,当时,函数的图像与直线有1个交点;
当,时,函数的图像与直线有2个交点;
当,时,函数的图像与直线有3个交点;
练习册系列答案
相关题目