ÌâÄ¿ÄÚÈÝ

£¨2011•Ëɽ­Çø¶þÄ££©ÎÒÃÇ°ÑһϵÁÐÏòÁ¿
ai
£¨i=1£¬2£¬¡­£¬n£©°´´ÎÐòÅųÉÒ»ÁУ¬³Æ֮ΪÏòÁ¿ÁУ¬¼Ç×÷{
ai
}£®ÒÑÖªÏòÁ¿ÁÐ{
ai
}Âú×㣺
a1
£¬
an
=
1
2
(xn-1-yn-1£¬xn-1+yn-1)
£¨n¡Ý2£©£®
£¨1£©Ö¤Ã÷ÊýÁÐ{|
ai
|}ÊǵȱÈÊýÁУ»
£¨2£©Éè¦Èn±íʾÏòÁ¿
an-1
£¬
an
¼äµÄ¼Ð½Ç£¬Èôbn=2n¦Èn-1£¬Sn=b1+b2+¡­+bn£¬ÇóSn£»
£¨3£©Éè|
an
|•log2|
an
|£¬ÎÊÊýÁÐ{cn}ÖÐÊÇ·ñ´æÔÚ×îСÏÈô´æÔÚ£¬Çó³ö×îСÏÈô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÓÉ|
an
|=
1
2
(xn-1-yn-1)2+(xn-1+yn-1)2
=
2
2
x
2
n-1
+
y
2
n-1
=
2
2
|
|
an-1
|£¬ÖªÊýÁÐ{
ai
}ÊǵȱÈÊýÁУ®
£¨2£©ÓÉcos¦Èn=
an-1
an
|
an-1
|•|
an
|
=
1
2
(
x
2
n-1
+
y
2
n-1
)
2
2
(
x
2
n-1
+
y
2
n-1
)
=
2
2
£¬Öªbn=
n¦Ð
2
-1
£¬ÓÉ´ËÄÜÇó³öÇóSn£®
£¨3£©ÓÉ|
an
|=
2
(
2
2
)n-1=2
2-n
2
£¬Öªcn=
2-n
2
2
2-n
2
£®¼ÙÉè{cn}ÖеĵÚnÏî×îС£¬ÓÉc1=
2
2
£¬c2=0£¬Äܹ»ÍƵ¼³öÊýÁÐ{cn}ÖдæÔÚ×îСÏ×îСÏîÊÇc5=-
3
2
2-
3
2
£®
½â´ð£º½â£º£¨1£©|
an
|=
1
2
(xn-1-yn-1)2+(xn-1+yn-1)2
¡­£¨1·Ö£©
=
2
2
x
2
n-1
+
y
2
n-1
=
2
2
|
|
an-1
|£¬¡àÊýÁÐ{
ai
}ÊǵȱÈÊýÁС­£¨3·Ö£©
£¨2£©¡ßcos¦Èn=
an-1
an
|
an-1
|•|
an
|
=
1
2
(
x
2
n-1
+
y
2
n-1
)
2
2
(
x
2
n-1
+
y
2
n-1
)
=
2
2
¡­£¨5·Ö£©
¡à¦Èn=
¦Ð
4
£¬¡àbn=
n¦Ð
2
-1
¡­£¨7·Ö£©
¡àSn=(
1
2
¦Ð-1)+(
2
2
¦Ð-1)+¡­+(
n
2
¦Ð-1)=
¦Ð
4
(n2+n)-n
¡­£¨8·Ö£©
£¨3£©¡ß|
an
|=
2
(
2
2
)n-1=2
2-n
2
¡àcn=
2-n
2
2
2-n
2
¡­£¨10·Ö£©
¼ÙÉè{cn}ÖеĵÚnÏî×îС£¬ÓÉc1=
2
2
£¬c2=0£¬¡à0¡Üc2£¼c1¡­£¨11·Ö£©
µ±n¡Ý3ʱ£¬ÓÐcn£¼0£¬ÓÉcn¡Ücn+1
µÃ  
2-n
2
2
2-n
2
¡Ü
2-(n+1)
2
2
2-(n+1)
2

¼´
2-n
1-n
¡Ý2-
1
2
£¬(
2-n
1-n
)2¡Ý
1
2
n2-6n+7¡Ý0£¬n¡Ý3+
2
»òn¡Ü3-
2
£¨Éᣩ£¬
¡àn¡Ý5
¼´ÓÐc5£¼c6£¼c7£¼¡­£»                                   ¡­£¨13·Ö£©
ÓÉcn¡Ýcn+1£¬µÃ3¡Ün¡Ü5£¬ÓÖ0¡Üc2£¼c1£¬¡àc5£¼c4£¼¡­£¼c1£»¡­£¨15·Ö£©
¹ÊÊýÁÐ{cn}ÖдæÔÚ×îСÏ×îСÏîÊÇc5=-
3
2
2-
3
2
£®¡­£¨16·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁкÍÏòÁ¿µÄ×ÛºÏÔËÓ㬽âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£¬×¢ÒâÍÚ¾òÌâÉèÖеÄÒþº¬Ìõ¼þ£¬ºÏÀíµØ½øÐеȼÛת»¯£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø