ÌâÄ¿ÄÚÈÝ
£¨2011•ËɽÇø¶þÄ££©ÎÒÃÇ°ÑһϵÁÐÏòÁ¿
£¨i=1£¬2£¬¡£¬n£©°´´ÎÐòÅųÉÒ»ÁУ¬³Æ֮ΪÏòÁ¿ÁУ¬¼Ç×÷{
}£®ÒÑÖªÏòÁ¿ÁÐ{
}Âú×㣺
£¬
=
(xn-1-yn-1£¬xn-1+yn-1)£¨n¡Ý2£©£®
£¨1£©Ö¤Ã÷ÊýÁÐ{|
|}ÊǵȱÈÊýÁУ»
£¨2£©Éè¦Èn±íʾÏòÁ¿
£¬
¼äµÄ¼Ð½Ç£¬Èôbn=2n¦Èn-1£¬Sn=b1+b2+¡+bn£¬ÇóSn£»
£¨3£©Éè|
|•log2|
|£¬ÎÊÊýÁÐ{cn}ÖÐÊÇ·ñ´æÔÚ×îСÏÈô´æÔÚ£¬Çó³ö×îСÏÈô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
ai |
ai |
ai |
a1 |
an |
1 |
2 |
£¨1£©Ö¤Ã÷ÊýÁÐ{|
ai |
£¨2£©Éè¦Èn±íʾÏòÁ¿
an-1 |
an |
£¨3£©Éè|
an |
an |
·ÖÎö£º£¨1£©ÓÉ|
|=
=
=
||
|£¬ÖªÊýÁÐ{
}ÊǵȱÈÊýÁУ®
£¨2£©ÓÉcos¦Èn=
=
=
£¬Öªbn=
-1£¬ÓÉ´ËÄÜÇó³öÇóSn£®
£¨3£©ÓÉ|
|=
(
)n-1=2
£¬Öªcn=
•2
£®¼ÙÉè{cn}ÖеĵÚnÏî×îС£¬ÓÉc1=
£¬c2=0£¬Äܹ»ÍƵ¼³öÊýÁÐ{cn}ÖдæÔÚ×îСÏ×îСÏîÊÇc5=-
•2-
£®
an |
1 |
2 |
(xn-1-yn-1)2+(xn-1+yn-1)2 |
| ||
2 |
|
| ||
2 |
an-1 |
ai |
£¨2£©ÓÉcos¦Èn=
| ||||
|
|
| ||||||||
|
| ||
2 |
n¦Ð |
2 |
£¨3£©ÓÉ|
an |
2 |
| ||
2 |
2-n |
2 |
2-n |
2 |
2-n |
2 |
| ||
2 |
3 |
2 |
3 |
2 |
½â´ð£º½â£º£¨1£©|
|=
¡£¨1·Ö£©
=
=
||
|£¬¡àÊýÁÐ{
}ÊǵȱÈÊýÁС£¨3·Ö£©
£¨2£©¡ßcos¦Èn=
=
=
¡£¨5·Ö£©
¡à¦Èn=
£¬¡àbn=
-1¡£¨7·Ö£©
¡àSn=(
¦Ð-1)+(
¦Ð-1)+¡+(
¦Ð-1)=
(n2+n)-n¡£¨8·Ö£©
£¨3£©¡ß|
|=
(
)n-1=2
¡àcn=
•2
¡£¨10·Ö£©
¼ÙÉè{cn}ÖеĵÚnÏî×îС£¬ÓÉc1=
£¬c2=0£¬¡à0¡Üc2£¼c1¡£¨11·Ö£©
µ±n¡Ý3ʱ£¬ÓÐcn£¼0£¬ÓÉcn¡Ücn+1
µÃ
•2
¡Ü
•2
¼´
¡Ý2-
£¬(
)2¡Ý
n2-6n+7¡Ý0£¬n¡Ý3+
»òn¡Ü3-
£¨Éᣩ£¬
¡àn¡Ý5
¼´ÓÐc5£¼c6£¼c7£¼¡£» ¡£¨13·Ö£©
ÓÉcn¡Ýcn+1£¬µÃ3¡Ün¡Ü5£¬ÓÖ0¡Üc2£¼c1£¬¡àc5£¼c4£¼¡£¼c1£»¡£¨15·Ö£©
¹ÊÊýÁÐ{cn}ÖдæÔÚ×îСÏ×îСÏîÊÇc5=-
•2-
£®¡£¨16·Ö£©
an |
1 |
2 |
(xn-1-yn-1)2+(xn-1+yn-1)2 |
=
| ||
2 |
|
| ||
2 |
an-1 |
ai |
£¨2£©¡ßcos¦Èn=
| ||||
|
|
| ||||||||
|
| ||
2 |
¡à¦Èn=
¦Ð |
4 |
n¦Ð |
2 |
¡àSn=(
1 |
2 |
2 |
2 |
n |
2 |
¦Ð |
4 |
£¨3£©¡ß|
an |
2 |
| ||
2 |
2-n |
2 |
2-n |
2 |
2-n |
2 |
¼ÙÉè{cn}ÖеĵÚnÏî×îС£¬ÓÉc1=
| ||
2 |
µ±n¡Ý3ʱ£¬ÓÐcn£¼0£¬ÓÉcn¡Ücn+1
µÃ
2-n |
2 |
2-n |
2 |
2-(n+1) |
2 |
2-(n+1) |
2 |
¼´
2-n |
1-n |
1 |
2 |
2-n |
1-n |
1 |
2 |
2 |
2 |
¡àn¡Ý5
¼´ÓÐc5£¼c6£¼c7£¼¡£» ¡£¨13·Ö£©
ÓÉcn¡Ýcn+1£¬µÃ3¡Ün¡Ü5£¬ÓÖ0¡Üc2£¼c1£¬¡àc5£¼c4£¼¡£¼c1£»¡£¨15·Ö£©
¹ÊÊýÁÐ{cn}ÖдæÔÚ×îСÏ×îСÏîÊÇc5=-
3 |
2 |
3 |
2 |
µãÆÀ£º±¾Ì⿼²éÊýÁкÍÏòÁ¿µÄ×ÛºÏÔËÓ㬽âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£¬×¢ÒâÍÚ¾òÌâÉèÖеÄÒþº¬Ìõ¼þ£¬ºÏÀíµØ½øÐеȼÛת»¯£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿