题目内容
【题目】已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为.
(1)求椭圆的标准方程;
(2)已知圆,直线.试证:当点在椭圆上运动时,直线与圆恒相交,并求直线被圆所截得弦长的取值范围.
【答案】(1) (2)证明见解析;
【解析】
(1)由题意先求出即,再根据椭圆上的点到点的最大距离为,即,结合计算即可;
(2) 由圆,直线可求出圆心直线的距离,再代入弦长公式,结合根据直线与圆恒相交以及椭圆方程即可求出被圆所截得弦长的取值范围.
解:(1)由,得,
所以直线过定点,即.
设椭圆方程
,所以椭圆方程为
(2)因为点在椭圆上,所以,
圆心到直线的距离为
所以直线与圆恒相交.
又直线被圆截得的弦长为
,
由于,所以,
则,即直线被圆截得的弦长的取值范围是.
【题目】PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5的数据如下表:
时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
车流量×(万辆) | 50 | 51 | 54 | 57 | 58 |
PM2.5的浓度(微克/立方米) | 60 | 70 | 74 | 78 | 79 |
(1)根据上表数据,用最小二乘法求出y关于x的线性回归方程;
(2)若周六同一时间段的车流量是25万辆,试根据(1)求出的线性回归方程,预测此时PM2.5的浓度为多少(保留整数)?
参考公式:由最小二乘法所得回归直线的方程是:,其中,
【题目】为了了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验将只小鼠随机分成、两组,每组只,其中组小鼠给服甲离子溶液,组小鼠给服乙离子溶液每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比根据试验数据分别得到如图所示的直方图:
根据频率分布直方图估计,事件:“乙离子残留在体内的百分比不高于”发生的概率.
(1)根据所给的频率分布直方图估计各段频数;
(附:频数分布表)
组实验甲离子残留频数表 | |||
组实验乙离子残留频数表 | |||
(2)请估计甲离子残留百分比的中位数,请估计乙离子残留百分比的平均值.