题目内容
已知偶函数y=f(x)(x∈R)在区间[-1,0]上单调递增,且满足f(1-x)+f(1+x)=0,给出下列判断:(1)f(5)=0;(2)f(x)在[1,2]上减函数;(3)f(x)的图象关与直线x=1对称;(4)函数f(x)在x=0处取得最大值;(5)函数y=f(x)没有最小值,其中正确的序号是 .
【答案】分析:先根据偶函数y=f(x)(x∈R)在区间[-1,0]上单调递增,以及y=f(x)关于点(1,0)对称,画出示意图,然后根据示意图进行逐一进行判定,从而得到结论.
解答:解:∵f(1-x)+f(1+x)=0
∴y=f(x)关于点(1,0)对称
画出满足条件的图形
结合图形可知(1)(2)(4)正确
故答案为:(1)(2)(4).
点评:本题主要考查了函数的奇偶性、单调性、对称性等有关的基础题知识,同时考查了画图,识图的能力,属于基础题.
解答:解:∵f(1-x)+f(1+x)=0
∴y=f(x)关于点(1,0)对称
画出满足条件的图形
结合图形可知(1)(2)(4)正确
故答案为:(1)(2)(4).
点评:本题主要考查了函数的奇偶性、单调性、对称性等有关的基础题知识,同时考查了画图,识图的能力,属于基础题.
练习册系列答案
相关题目
已知偶函数y=f(x)在[-1,0]上为单调递减函数,又α、β为锐角三角形的两内角,则( )
A、f(sinα)>f(cosβ) | B、f(sinα)<f(cosβ) | C、f(sinα)>f(sinβ) | D、f(cosα)>f(cosβ) |