ÌâÄ¿ÄÚÈÝ
ÒÑÖªÊý¼¯A={a1£¬a2£¬¡£¬an}£¨1¡Üa1£¼a2£¼¡£¼an£¬n¡Ý2£©¾ßÓÐÐÔÖÊP£º¶ÔÈÎÒâµÄi£¬j£¨1¡Üi¡Üj¡Ün£©£¬aiajÓëÁ½ÊýÖÐÖÁÉÙÓÐÒ»¸öÊôÓÚA£®
£¨1£©·Ö±ðÅжÏÊý¼¯{1£¬3£¬4}Óë{1£¬2£¬3£¬6}ÊÇ·ñ¾ßÓÐÐÔÖÊP£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©Çóa1µÄÖµ£»µ±n=3ʱ£¬ÊýÁÐa1£¬a2£¬a3ÊÇ·ñ³ÉµÈ±ÈÊýÁУ¬ÊÔ˵Ã÷ÀíÓÉ£»
£¨3£©ÓÉ£¨2£©¼°Í¨¹ý¶ÔAµÄ̽¾¿£¬ÊÔд³ö¹ØÓÚÊýÁÐa1£¬a2£¬¡£¬anµÄÒ»¸öÕæÃüÌ⣬²¢¼ÓÒÔÖ¤Ã÷£®
½â£º£¨1£©ÓÉÓÚ3¡Á4 Óë ¾ù²»ÊôÓÚÊý¼¯{1£¬3£¬4}£¬¡àÊý¼¯{1£¬3£¬4} ²»¾ßÓÐÐÔÖÊP ¡2·Ö
ÓÉÓÚ1¡Á2£¬1¡Á3£¬1¡Á6£¬2¡Á3£¬£¬£¬ ¶¼ÊôÓÚÊý¼¯{1£¬2£¬3£¬6}£¬
¡àÊý¼¯{1£¬2£¬3£¬6} ¾ßÓÐÐÔÖÊP¡4·Ö
£¨2£©¡ßA={a1£¬a2£¬¡£¬an} ¾ßÓÐÐÔÖÊP£¬
¡àanan Óë ÖÐÖÁÉÙÓÐÒ»¸öÊôÓÚA£¬ÓÉÓÚ 1¡Üa1£¼a2£¼¡an£¬¹Êanan∉A ¡5·Ö
´Ó¶ø ¡6·Ö¡àa1=1 ¡7·Ö
µ±n=3 ʱ£¬¡ß£¬a1=1£¬a2a3∉A£¬¡à ¶¼ÊôÓÚA ¡8·Ö
´Ó¶ø£¬£¬£¬¼´a3=a1a3=a22£¬¡9·Ö
¹ÊÊýÁÐa1£¬a2£¬a3 ³ÉµÈ±ÈÊýÁС10·Ö
£¨3£©¶ÔÓÚÒ»ÇдóÓÚ»òµÈÓÚ3µÄÆæÊýn£¬Âú×ãÐÔÖÊP µÄÊýÁÐa1£¬a2£¬¡£¬an ³ÉµÈ±ÈÊýÁУ® ¡12·Ö
Ö¤Ã÷£ºÓÉ£¨2£©£¬²»·ÁÉèn=2k+1£¨k¡ÊN£¬k¡Ý2£©£®Ê×ÏÈÒ×µÃa2k+1ai∉A£¨i=1£¬¡2k£©£¬Öª ¶¼ÊôÓÚA£¬ÓÖ£¬´Ó¶ø£¬ÓÐ £¬¼´ a2k+1=a1a2k+1=a2a2k=a3a2k-1=¡=ai+2a2k-i=¡=a2ak+2=ak+12 ¡£¨©~£© ÒòΪai+ja2k-i£¾ai+2a2k-i=a2k+1£¨0¡Üi¡Ük-2£¬3¡Üj¡Ü2k-2i£©£¬ËùÒÔ£¬Ö»ÓУ¬£¬ ¾ùÊôÓÚA£® ½«i ´Ó0 µ½k-2 Áо٣¬±ãµÃµ½£º
µÚ1×飺£¬¹²2k-2 Ï
µÚ2×飺£¬¹²2k-4 Ï
µÚ3×飺£¬¹²2k-6 Ï
¡µÚk-1 ×飺£¬¹²2 ÏÉÏÒ»×éµÄµÚ2Ïî×Ü´óÓÚÏÂÒ»×éµÄµÚ1Ï
ÔÙ×¢Òâµ½£¬¹ÊµÚ1×éµÄ¸÷Êý´Ó×óµ½ÓÒÒÀ´ÎΪ£ºa2k-2£¬a2k-3£¬a2k-4£¬¡£¬a2£¬a1£»µÚ2×éµÄ¸÷Êý´Ó×óµ½ÓÒÒÀ´ÎΪ£ºa2k-4£¬a2k-5£¬a2k-6£¬¡£¬a2£¬a1£»µÚ3×éµÄ¸÷Êý´Ó×óµ½ÓÒÒÀ´ÎΪ£ºa2k-6£¬a2k-7£¬a2k-8£¬¡£¬a2£¬a1£» ¡µÚk-1 ×éµÄ¸÷Êý´Ó×óµ½ÓÒÒÀ´ÎΪ£ºa2£¬a1£®ÓÚÊÇ£¬ÓУ¬ÓÉ£¨©~£©£¬£¬£¬¡£¬£¬ÓÖ£¬¹ÊÊýÁÐa1£¬a2£¬¡£¬an ³ÉµÈ±ÈÊýÁУ®¡15·Ö
·ÖÎö£º£¨1£©¸ù¾ÝÐÔÖÊP£»¶ÔÈÎÒâµÄi£¬j£¨1¡Üi¡Üj¡Ün£©£¬aiajÓë Á½ÊýÖÐÖÁÉÙÓÐÒ»¸öÊôÓÚA£¬ÑéÖ¤¸øµÄ¼¯ºÏ¼¯{1£¬3£¬4}Óë{1£¬2£¬3£¬6}ÖеÄÈκÎÁ½¸öÔªËصĻýÉÌÊÇ·ñΪ¸Ã¼¯ºÏÖеÄÔªËØ£»
£¨2£©¸ù¾ÝA={a1£¬a2£¬¡£¬an} ¾ßÓÐÐÔÖÊP£¬Ôòanan Óë ÖÐÖÁÉÙÓÐÒ»¸öÊôÓÚA£¬ÓÉÓÚ 1¡Üa1£¼a2£¼¡an£¬¹Êanan∉A ´Ó¶ø Çó³öa1µÄÖµ£¬Ò×Ö¤ ¶¼ÊôÓÚA£¬´Ó¶ø£¬£¬£¬¼´a3=a1a3=a22£¬Âú×ãµÈ±ÈÊýÁеĶ¨Ò壻
£¨3£©¶ÔÓÚÒ»ÇдóÓÚ»òµÈÓÚ3µÄÆæÊýn£¬Âú×ãÐÔÖÊP µÄÊýÁÐa1£¬a2£¬¡£¬an ³ÉµÈ±ÈÊýÁУ¬ÓÉ£¨2£©£¬²»·ÁÉèn=2k+1£¨k¡ÊN£¬k¡Ý2£©£®Ê×ÏÈÒ×µÃa2k+1ai∉A£¨i=1£¬¡2k£©£¬·ÂÕÕ£¨2£©µÄ·½·¨½øÐÐÖ¤Ã÷¼´¿É£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é¼¯ºÏ¡¢µÈ±ÈÊýÁеÄÐÔÖÊ£¬¿¼²éÔËËãÄÜÁ¦¡¢ÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢·Ö·ÖÀàÌÖÂÛµÈÊýѧ˼Ïë·½·¨£®´ËÌâÄܺܺõĿ¼²éѧÉúµÄÓ¦ÓÃ֪ʶ·ÖÎö¡¢½â¾öÎÊÌâµÄÄÜÁ¦£¬²àÖØÓÚ¶ÔÄÜÁ¦µÄ¿¼²é£¬ÊôÓÚ½ÏÄѲã´ÎÌ⣮
ÓÉÓÚ1¡Á2£¬1¡Á3£¬1¡Á6£¬2¡Á3£¬£¬£¬ ¶¼ÊôÓÚÊý¼¯{1£¬2£¬3£¬6}£¬
¡àÊý¼¯{1£¬2£¬3£¬6} ¾ßÓÐÐÔÖÊP¡4·Ö
£¨2£©¡ßA={a1£¬a2£¬¡£¬an} ¾ßÓÐÐÔÖÊP£¬
¡àanan Óë ÖÐÖÁÉÙÓÐÒ»¸öÊôÓÚA£¬ÓÉÓÚ 1¡Üa1£¼a2£¼¡an£¬¹Êanan∉A ¡5·Ö
´Ó¶ø ¡6·Ö¡àa1=1 ¡7·Ö
µ±n=3 ʱ£¬¡ß£¬a1=1£¬a2a3∉A£¬¡à ¶¼ÊôÓÚA ¡8·Ö
´Ó¶ø£¬£¬£¬¼´a3=a1a3=a22£¬¡9·Ö
¹ÊÊýÁÐa1£¬a2£¬a3 ³ÉµÈ±ÈÊýÁС10·Ö
£¨3£©¶ÔÓÚÒ»ÇдóÓÚ»òµÈÓÚ3µÄÆæÊýn£¬Âú×ãÐÔÖÊP µÄÊýÁÐa1£¬a2£¬¡£¬an ³ÉµÈ±ÈÊýÁУ® ¡12·Ö
Ö¤Ã÷£ºÓÉ£¨2£©£¬²»·ÁÉèn=2k+1£¨k¡ÊN£¬k¡Ý2£©£®Ê×ÏÈÒ×µÃa2k+1ai∉A£¨i=1£¬¡2k£©£¬Öª ¶¼ÊôÓÚA£¬ÓÖ£¬´Ó¶ø£¬ÓÐ £¬¼´ a2k+1=a1a2k+1=a2a2k=a3a2k-1=¡=ai+2a2k-i=¡=a2ak+2=ak+12 ¡£¨©~£© ÒòΪai+ja2k-i£¾ai+2a2k-i=a2k+1£¨0¡Üi¡Ük-2£¬3¡Üj¡Ü2k-2i£©£¬ËùÒÔ£¬Ö»ÓУ¬£¬ ¾ùÊôÓÚA£® ½«i ´Ó0 µ½k-2 Áо٣¬±ãµÃµ½£º
µÚ1×飺£¬¹²2k-2 Ï
µÚ2×飺£¬¹²2k-4 Ï
µÚ3×飺£¬¹²2k-6 Ï
¡µÚk-1 ×飺£¬¹²2 ÏÉÏÒ»×éµÄµÚ2Ïî×Ü´óÓÚÏÂÒ»×éµÄµÚ1Ï
ÔÙ×¢Òâµ½£¬¹ÊµÚ1×éµÄ¸÷Êý´Ó×óµ½ÓÒÒÀ´ÎΪ£ºa2k-2£¬a2k-3£¬a2k-4£¬¡£¬a2£¬a1£»µÚ2×éµÄ¸÷Êý´Ó×óµ½ÓÒÒÀ´ÎΪ£ºa2k-4£¬a2k-5£¬a2k-6£¬¡£¬a2£¬a1£»µÚ3×éµÄ¸÷Êý´Ó×óµ½ÓÒÒÀ´ÎΪ£ºa2k-6£¬a2k-7£¬a2k-8£¬¡£¬a2£¬a1£» ¡µÚk-1 ×éµÄ¸÷Êý´Ó×óµ½ÓÒÒÀ´ÎΪ£ºa2£¬a1£®ÓÚÊÇ£¬ÓУ¬ÓÉ£¨©~£©£¬£¬£¬¡£¬£¬ÓÖ£¬¹ÊÊýÁÐa1£¬a2£¬¡£¬an ³ÉµÈ±ÈÊýÁУ®¡15·Ö
·ÖÎö£º£¨1£©¸ù¾ÝÐÔÖÊP£»¶ÔÈÎÒâµÄi£¬j£¨1¡Üi¡Üj¡Ün£©£¬aiajÓë Á½ÊýÖÐÖÁÉÙÓÐÒ»¸öÊôÓÚA£¬ÑéÖ¤¸øµÄ¼¯ºÏ¼¯{1£¬3£¬4}Óë{1£¬2£¬3£¬6}ÖеÄÈκÎÁ½¸öÔªËصĻýÉÌÊÇ·ñΪ¸Ã¼¯ºÏÖеÄÔªËØ£»
£¨2£©¸ù¾ÝA={a1£¬a2£¬¡£¬an} ¾ßÓÐÐÔÖÊP£¬Ôòanan Óë ÖÐÖÁÉÙÓÐÒ»¸öÊôÓÚA£¬ÓÉÓÚ 1¡Üa1£¼a2£¼¡an£¬¹Êanan∉A ´Ó¶ø Çó³öa1µÄÖµ£¬Ò×Ö¤ ¶¼ÊôÓÚA£¬´Ó¶ø£¬£¬£¬¼´a3=a1a3=a22£¬Âú×ãµÈ±ÈÊýÁеĶ¨Ò壻
£¨3£©¶ÔÓÚÒ»ÇдóÓÚ»òµÈÓÚ3µÄÆæÊýn£¬Âú×ãÐÔÖÊP µÄÊýÁÐa1£¬a2£¬¡£¬an ³ÉµÈ±ÈÊýÁУ¬ÓÉ£¨2£©£¬²»·ÁÉèn=2k+1£¨k¡ÊN£¬k¡Ý2£©£®Ê×ÏÈÒ×µÃa2k+1ai∉A£¨i=1£¬¡2k£©£¬·ÂÕÕ£¨2£©µÄ·½·¨½øÐÐÖ¤Ã÷¼´¿É£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é¼¯ºÏ¡¢µÈ±ÈÊýÁеÄÐÔÖÊ£¬¿¼²éÔËËãÄÜÁ¦¡¢ÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢·Ö·ÖÀàÌÖÂÛµÈÊýѧ˼Ïë·½·¨£®´ËÌâÄܺܺõĿ¼²éѧÉúµÄÓ¦ÓÃ֪ʶ·ÖÎö¡¢½â¾öÎÊÌâµÄÄÜÁ¦£¬²àÖØÓÚ¶ÔÄÜÁ¦µÄ¿¼²é£¬ÊôÓÚ½ÏÄѲã´ÎÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿