题目内容
若不论k为何值,直线y=k(x-2)+b与曲线x2-y2=1总有公共点,则b的取值范围是
[-
,
]
3 |
3 |
[-
,
]
.3 |
3 |
分析:把y=k(x-2)+b代入x2-y2=1得(1-k2)x2-2k(b-2k)x-(b-2k)2-1=0,△=4k2(b-2k)2+4(1-k2)[(b-2k)2+1]=4[3(k-2b×
3)2+b2+1-4b2×
],不论k取何值,△≥0,所以
≤1,由此能求出b的取值范围.
1 |
3 |
1 |
3 |
b2 |
3 |
解答:解:把y=k(x-2)+b代入x2-y2=1得:
x2-[k(x-2)+b]2=1,
(1-k2)x2-2k(b-2k)x-(b-2k)2-1=0,
△=4k2(b-2k)2+4(1-k2)[(b-2k)2+1]
=4(1-k2)+4(b-2k)2
=4[3k2-4bk+b2+1]
=4[3(k-2b×
3)2+b2+1-4b2×
],
不论k取何值,△≥0
b2+1-4b2×
≥0
∴
≤1,
b2≤3,
-
≤b≤
.
故答案为:[-
,
].
x2-[k(x-2)+b]2=1,
(1-k2)x2-2k(b-2k)x-(b-2k)2-1=0,
△=4k2(b-2k)2+4(1-k2)[(b-2k)2+1]
=4(1-k2)+4(b-2k)2
=4[3k2-4bk+b2+1]
=4[3(k-2b×
1 |
3 |
1 |
3 |
不论k取何值,△≥0
b2+1-4b2×
1 |
3 |
∴
b2 |
3 |
b2≤3,
-
3 |
3 |
故答案为:[-
3 |
3 |
点评:本题考查直线与双曲线的性质和应用,解题时要认真审题,仔细解答,注意根的判别式的合理运用.
练习册系列答案
相关题目