题目内容

【题目】如图,在几何体ABCDE中,四边形ABCD是矩形,AB平面BEC,BEEC,AB=BE=EC=2,G,F分别是线段BE,DC的中点.

)求证:平面

)求平面AEF与平面BEC所成锐二面角的余弦值.

【答案】)详见解析;(

【解析】解法一:()如图,取的中点,连接,又G是BE的中点,

又F是CD中点,,由四边形ABCD是矩形得,,所以.从而四边形是平行四边形,所以,,又,所以

)如图,在平面BEC内,过点B作,因为

又因为AB平面BEC,所以ABBE,ABBQ

以B为原点,分别以的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,则A(0,0,2),B(0,0,0),E(2,0,0),F(2,2,1).因为AB平面BEC,所以为平面BEC的法向量,

为平面AEF的法向量.又

.

从而

所以平面AEF与平面BEC所成锐二面角的余弦值为

解法二:()如图,取中点,连接,又的中点,可知

,所以平面

在矩形ABCD中,由M,F分别是AB,CD的中点得

,所以

又因为

所以平面,因为,所以平面

)同解法一.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网