搜索
题目内容
已知圆
的圆心为抛物线
的焦点,直线
与圆
相切,则该圆的方程为( )
A.
B.
C.
D.
试题答案
相关练习册答案
B
试题分析:因为抛物线
的焦点坐标为
.又因为圆心的坐标为
,所以依题意可得
.又因为直线
与圆
相切,所以根据圆心到直线
的距离等于半径可得
.所圆的方程为
.故选B.正确处理相切、抛物线的焦点坐标是关键.
练习册系列答案
高效测评课课小考卷系列答案
课堂练习册系列答案
教材解读系列答案
新教材完全解读系列答案
高效学习法系列答案
活页单元测评卷系列答案
配套练习与检测系列答案
前沿课时设计系列答案
云南省标准教辅优佳学案系列答案
新课程标准赢在期末系列答案
相关题目
已知
为椭圆
上的三个点,
为坐标原点.
(1)若
所在的直线方程为
,求
的长;
(2)设
为线段
上一点,且
,当
中点恰为点
时,判断
的面积是否为常数,并说明理由.
已知曲线
:
.
(1)若曲线
是焦点在
轴上的椭圆,求
的取值范围;
(2)设
,过点
的直线
与曲线
交于
,
两点,
为坐标原点,若
为直角,求直线
的斜率.
已知椭圆
:
的离心率为
且与双曲线
:
有共同焦点.
(1)求椭圆
的方程;
(2)在椭圆
落在第一象限的图像上任取一点作
的切线
,求
与坐标轴围成的三角形的面积的最小值;
(3)设椭圆
的左、右顶点分别为
,过椭圆
上的一点
作
轴的垂线交
轴于点
,若
点满足
,
,连结
交
于点
,求证:
.
已知椭圆
两焦点坐标分别为
,
,且经过点
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)已知点
,直线
与椭圆
交于两点
.若△
是以
为直角顶点的等腰直角三角形,试求直线
的方程.
给定椭圆C:
,若椭圆C的一个焦点为F(
,0),其短轴上的一个端点到F的距离为
.
(I)求椭圆C的方程;
(II)已知斜率为k(k≠0)的直线l与椭圆C交于不同的两点A,B,点Q满足
且
=0,其中N为椭圆的下顶点,求直线在y轴上截距的取值范围.
已知椭圆的中心在原点,焦点在x轴上,离心率为
,且经过点
,直线
交椭圆于不同的两点A,B.
(Ⅰ)求椭圆的方程;
(Ⅱ)求m的取值范围;
(Ⅲ)若直线
不过点M,求证:直线MA、MB与x轴围成一个等腰三角形
已知双曲线
的顶点恰好是椭圆
的两个顶点,且焦距是
,则此双曲线的渐近线方程是( )
A.
B.
C.
D.
抛物线
绕
轴旋转一周形成一个如图所示的旋转体,在此旋转体内水平放入一个正方体,该正方体的一个面恰好与旋转体的开口面平齐,则此正方体的体积是
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总