题目内容
定义在实数集上的函数.
⑴求函数的图象在处的切线方程;
⑵若对任意的恒成立,求实数m的取值范围.
⑴;⑵实数m的取值范围.
解析试题分析:⑴曲线在点处的切线方程为:,所以求出导数及切点即得切线方程;⑵可化为,令,则只需的最小值小于等于0即可.下面就利用导数求的最小值然后解不等式即可得实数m的取值范围.
试题解析:⑴∵,当时,
∵
∴所求切线方程为. .(4分)
⑵令
∴当时,;
当时,;
当时,;
要使恒成立,即.
由上知的最大值在或取得.
而
∴实数m的取值范围. 13分
考点:1、导数的应用;2、导数与不等式.
练习册系列答案
相关题目