题目内容

探究函数f(x)=x2+
16
x2
(x>0)
的最小值,并确定取得最小值时x的值.列表如下,请观察表中y值随x值变化的特点,完成以下的问题.
x 0.5 1 1.5 1.7 2 2.1 2.3 3 4 7
y 64.25 17 9.36 8.43 8 8.04 8.31 10.7 17 49.33
已知:函数f(x)=x2+
16
x2
(x>0)
在区间(0,2)上递减,问:
(1)函数f(x)=x2+
16
x2
(x>0)
在区间
(2,+∞)
(2,+∞)
上递增.当x=
2
2
时,y最小=
4
4

(2)证明:函数f(x)=x2+
16
x2
(x>0)
在区间(0,2)递减;
(3)思考:函数f(x)=x2+
16
x2
(x<0)
有最大值或最小值吗?如有,是多少?此时x为何值?(直接回答结果,不需证明)
分析:(1)由图表可知,函数的单调增区间为(2,+∞);   当x=2时y最小=4,由此得到答案.
(2)设 0<x1<x2 <2,化简f(x1)-f(x2) 为
(x12-x22)(x12x22-16)
(x1x2)2
>0,从而f(x1)-f(x2)>0,
可得函数在(0,2)上为减函数.
(3)根据函数解析式可得,当x=-2时,函数y有最小值等于 8.
解答:解:(1)由图表可知,函数的单调增区间为(2,+∞);   当x=2时y最小=4.
故答案为(2,+∞),2,4. …(4分)
(2)证明:设 0<x1<x2 <2,
∵f(x1)-f(x2)=x12+
16
x12
-x22+
16
x22
=(x12-x22)(1-
16
(x1x2)2
)
=
(x12-x22)(x12x22-16)
(x1x2)2

又∵0<x1<x2<2,∴x12-x22<0,又∵x1,x2∈(0,2),∴0<(x1x2)2<16
(x1x2)2-16<0,∴f(x1)-f(x2)>0∴函数在(0,2)上为减函数.…(9分)
(3)思考:y=x2+
16
x2
,x∈(-∞,0)
,当x=-2时,函数y有最小值等于 8.…(12分)
点评:本题主要考查函数的单调性的判断和证明,函数的最值及其几何意义,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网