题目内容
已知数列{an}的前n项Sn=pn+q(p≠0,p≠1),求数列{an}是等比数列的充要条件.
证明略
a1=S1=p+q
当n≥2时,an=Sn-Sn-1=pn-1(p-1)
∵p≠0,p≠1,∴=p
若{an}为等比数列,则=p
∴=p,
∵p≠0,∴p-1=p+q,∴q=-1
这是{an}为等比数列的必要条件.
下面证明q=-1是{an}为等比数列的充分条件
当q=-1时,∴Sn=pn-1(p≠0,p≠1),a1=S1=p-1
当n≥2时,an=Sn-Sn-1=pn-pn-1=pn-1(p-1)
∴an=(p-1)pn-1 (p≠0,p≠1)
=p为常数
∴q=-1时,数列{an}为等比数列即数列{an}是等比数列的充要条件为q=-1.
当n≥2时,an=Sn-Sn-1=pn-1(p-1)
∵p≠0,p≠1,∴=p
若{an}为等比数列,则=p
∴=p,
∵p≠0,∴p-1=p+q,∴q=-1
这是{an}为等比数列的必要条件.
下面证明q=-1是{an}为等比数列的充分条件
当q=-1时,∴Sn=pn-1(p≠0,p≠1),a1=S1=p-1
当n≥2时,an=Sn-Sn-1=pn-pn-1=pn-1(p-1)
∴an=(p-1)pn-1 (p≠0,p≠1)
=p为常数
∴q=-1时,数列{an}为等比数列即数列{an}是等比数列的充要条件为q=-1.
练习册系列答案
相关题目