题目内容

如图,在四棱锥中,底面是矩形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明:PA∥平面EDB;
(2)证明:PB⊥平面EFD.

证明:(1)连结AC交BD于O,连结EO。
∵底面ABCD是正方形,
∴点O是AC的中点。
又∵E是PC的中点
∴在中,EO为中位线
∴PA∥EO。                                         …………………….3分
而EO平面EDB,PA平面EDB,
∴PA∥平面EDB。                                    ……………………6分
(2)由PD⊥底面ABCD,得PD⊥BC。
∵底面ABCD是正方形,
∴DC⊥BC,
∴BC⊥平面PDC,而DE平面PDC,
∴BC⊥DE。①                                       ……………………8分
PD=DC,E是PC的中点,
是等腰三角形,DE⊥PC。②                  ……………………10分
由①和②得DE⊥平面PBC。
而PB平面PBC,
∴DE⊥PB。                                        ……………………12分
又EF⊥PB且DEEF=E,
∴PB⊥平面EFD。

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网