题目内容
设数列{an}的前n项和为Sn,已知Sn=2an-2n+1(n∈N*).(1)求数列{an}的通项公式;
(2)令cn=(-1)n+1log
an |
n+1 |
| ||
2 |
分析:(1)由Sn=2an-2n+1,得Sn-1=2an-1-2n(n≥2).两式相减,得an=2an-2an-1-2n,即an-2an-1=2n(n≥2).
-
=1,所以数列{
}是公差为1的等差数列.由此可知an=(n+1)•2n.
(2)由题意知T2n=1-
+
-
++
-
=(1+
+
++
)-2(
+
++
)=
+
++
.然后再证明证
+
++
<
.
an |
2n |
an-1 |
2n-1 |
an |
2n |
(2)由题意知T2n=1-
1 |
2 |
1 |
3 |
1 |
4 |
1 |
2n-1 |
1 |
2n |
1 |
2 |
1 |
3 |
1 |
2n |
1 |
2 |
1 |
4 |
1 |
2n |
1 |
n+1 |
1 |
n+2 |
1 |
2n |
1 |
n+1 |
1 |
n+2 |
1 |
2n |
| ||
2 |
解答:解:(1)由Sn=2an-2n+1,得Sn-1=2an-1-2n(n≥2).
两式相减,得an=2an-2an-1-2n,即an-2an-1=2n(n≥2).
于是
-
=1,所以数列{
}是公差为1的等差数列.(5分)
又S1=2a1-22,所以a1=4.
所以
=2+(n-1)=n+1,故an=(n+1)•2n.(6分)
(2)因为cn=(-1)n+1•
,则当n≥2时,T2n=1-
+
-
++
-
=(1+
+
++
)-2(
+
++
)=
+
++
.(9分)
下面证
+
++
<
令g(x)=ln(x+1)-
(x>0),则g′(x)=
-
=
>0,
∴g(x)在(0,+∞)时单调递增,g(x)>g(0)=0,即当x>0时,ln(x+1)>
令x=
,ln
>
?ln(n+1)-lnn>
,ln(n+2)-ln(n+1)>
,
,ln(n+3)-ln(n+2)>
,ln(2n)-ln(2n-1)>
以上n个式相加,即有ln(2n)-lnn>
+
++
∴
+
++
<ln(2n)-lnn=ln2<
(14分)
两式相减,得an=2an-2an-1-2n,即an-2an-1=2n(n≥2).
于是
an |
2n |
an-1 |
2n-1 |
an |
2n |
又S1=2a1-22,所以a1=4.
所以
an |
2n |
(2)因为cn=(-1)n+1•
1 |
n |
1 |
2 |
1 |
3 |
1 |
4 |
1 |
2n-1 |
1 |
2n |
1 |
2 |
1 |
3 |
1 |
2n |
1 |
2 |
1 |
4 |
1 |
2n |
1 |
n+1 |
1 |
n+2 |
1 |
2n |
下面证
1 |
n+1 |
1 |
n+2 |
1 |
2n |
| ||
2 |
令g(x)=ln(x+1)-
x |
x+1 |
1 |
x+1 |
1 |
(x+1)2 |
x |
(x+1)2 |
∴g(x)在(0,+∞)时单调递增,g(x)>g(0)=0,即当x>0时,ln(x+1)>
x |
x+1 |
令x=
1 |
n |
n+1 |
n |
1 |
n+1 |
1 |
n+1 |
1 |
n+2 |
,ln(n+3)-ln(n+2)>
1 |
n+3 |
1 |
2n |
以上n个式相加,即有ln(2n)-lnn>
1 |
n+1 |
1 |
n+2 |
1 |
2n |
∴
1 |
n+1 |
1 |
n+2 |
1 |
2n |
| ||
2 |
点评:本题考查数列性质的综合运用,解题时要认真审题,注意公式的灵活运用.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目