题目内容
【题目】已知函数f(x)=lnx.
(1)若a=4,求函数f(x)的单调区间;
(2)若函数f(x)在区间(0,1]内单调递增,求实数a的取值范围;
(3)若x1、x2∈R+,且x1≤x2,求证:(lnx1﹣lnx2)(x1+2x2)≤3(x1﹣x2).
【答案】(1)见解析;(2);(3)见解析
【解析】
(1)将a=4代入f(x)求出f(x)的导函数,然后根据导函数的符号,得到函数的单调区间;
(2)根据条件将问题转化为在,上恒成立问题,然后根据函数的单调性求出的范围;
(3)根据条件将问题转化为成立问题,令,即成立,再利用函数的单调性证明即可.
解:(1)的定义域是,,
所以时,,
由,解得或,
由,解得,
故在和,上单调递增,在,上单调递减.
(2)由(1)得,
若函数在区间,递增,则有在,上恒成立,
即在,上恒成立成立,所以只需,
因为函数在时取得最小值9,所以,
所以a的取值范围为.
(3)当时,不等式显然成立,
当时,因为,,所以要原不等式成立,
只需成立即可,
令,则,
由(2)可知函数在,递增,所以,
所以成立,
所以(lnx1﹣lnx2)(x1+2x2)≤3(x1﹣x2).
【题目】近年来,来自“一带一路”沿线的20国青年评选出了中国的“新四大发明”:高铁、扫码支付、共享单车和网购.其中共享单车既响应绿色出行号召,节能减排,保护环境,又方便人们短距离出行,增强灵活性.某城市试投放3个品牌的共享单车分别为红车、黄车、蓝车,三种车的计费标准均为每15分钟(不足15分钟按15分钟计)1元,按每日累计时长结算费用,例如某人某日共使用了24分钟,系统计时为30分钟.A同学统计了他1个月(按30天计)每天使用共享单车的时长如茎叶图所示,不考虑每月自然因素和社会因素的影响,用频率近似代替概率.设A同学每天消费元.
(1)求的分布列及数学期望;
(2)各品牌为推广用户使用,推出APP注册会员的优惠活动:红车月功能使用费8元,每天消费打5折;黄车月功能使用费20元,每天前15分钟免费,之后消费打8折;蓝车月功能使用费45元,每月使用22小时之内免费,超出部分按每15分钟1元计费.设分别为红车,黄车,蓝车的月消费,写出与的函数关系式,参考(1)的结果,A同学下个月选择其中一个注册会员,他选哪个费用最低?
(3)该城市计划3个品牌的共享单车共3000辆正式投入使用,为节约居民开支,随机调查了100名用户一周的平均使用时长如下表:
时长 | (0,15] | (15,30] | (30,45] | (45,60] |
人数 | 16 | 45 | 34 | 5 |
在(2)的活动条件下,每个品牌各应该投放多少辆?
【题目】第十三届全国人大常委会第十一次会议审议的《固体废物污染环境防治法(修订草案)》中,提出推行生活垃圾分类制度,这是生活垃圾分类首次被纳入国家立法中.为了解某城市居民的垃圾分类意识与政府相关法规宣传普及的关系,对某试点社区抽取户居民进行调查,得到如下的列联表.
分类意识强 | 分类意识弱 | 合计 | |
试点后 | |||
试点前 | |||
合计 |
已知在抽取的户居民中随机抽取户,抽到分类意识强的概率为.
(1)请将上面的列联表补充完整;
(2)判断是否有的把握认为居民分类意识的强弱与政府宣传普及工作有关?说明你的理由;
参考公式:,其中.
下面的临界值表仅供参考