题目内容

已知函数f(x)=
1
2
x2-3x-
3
4
.定义函数f(x)与实数m的一种符号运算为m?f(x)=f(x)•[f(x+m)-f(x)].
(1)求使函数值f(x)大于0的x的取值范围;
(2)若g(x)=4?f(x)+
7
2
x2
,求g(x)在区间[0,4]上的最大值与最小值;
(3)是否存在一个数列{an},使得其前n项和Sn=4?f(n)+
7
2
n2
.若存在,求出其通项;若不存在,请说明理由.
分析:(1)函数值f(x)大于0的x的取值范围通过解不等式函数f(x)=
1
2
x2-3x-
3
4
>0求出即可.
(2)根据题设中的定义,将g(x)计算化简并整理,应得出g(x)=2x3-
21
2
x2+9x+3
,再利用导数求出g(x)在区间[0,4]上的最大值与最小值
(3)由(2)得Sn=4?f(n)+
7
2
n2
=2n3-
21
2
n2+9n+3
,转化为利用数列中an与 Sn关系求数列通项.
解答:解:(1)由f(x)>0,得
1
2
x2-3x-
3
4
>0
,…(1分)
即2x2-12x-3>0,解得x<3-
42
2
x>3+
42
2

所以,x的取值范围为 (-∞,3-
42
2
)∪(3+
42
2
,+∞)
.…(3分)
(2)g(x)=4?f(x)+
7
2
x2
=(
1
2
x2-3x-
3
4
)•{[
1
2
(x+4)2-3(x+4)-
3
4
]-(
1
2
x2-3x-
3
4
)}+
7
2
x2
=(
1
2
x2-3x-
3
4
)•(
1
2
×8x+
1
2
×16-3×4)+
7
2
x2
=(
1
2
x2-3x-
3
4
)•(4x-4)+
7
2
x2
=2x3-
21
2
x2+9x+3
.…(5分)
对g(x)求导,得g'(x)=6x2-21x+9=3(x-3)(2x-1).
令g'(x)=0,解得x=
1
2
或x=3.…(6分)
当x变化时,g'(x)、g(x)的变化情况如下表:
x 0 (0,
1
2
)
1
2
(
1
2
,3)
3 (3,4) 4
g'(x) + 0 - 0 +
g(x) 3
41
8
-
21
2
-1
所以,g(x)在区间[0,4]上的最大值为
41
8
,最小值为-
21
2
.…(10分)
(3)存在.
由(2)得Sn=4?f(n)+
7
2
n2
=2n3-
21
2
n2+9n+3
.…(11分)
当n≥2时,an=Sn-Sn-1=(2n3-
21
2
n2+9n+3)-[2(n-1)3-
21
2
(n-1)2+9(n-1)+3]
=2(3n2-3n+1)+
21
2
(-2n+1)+9=6n2-27n+
43
2

当n=1时,a1=S1=2×13-
21
2
×12+9×1+3=
7
2
.…(13分)
所以,an=
7
2
 
 
(n=1)
6n2-27n+
43
2
 
 
(n≥2)
.…(14分)
点评:本题考查了一元二次不等式解法、利用导数研究最大(小)值.以及利用数列中an与 Sn关系求数列通项.考查转化、变形、计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网