题目内容
【题目】在平面直角坐标系
中,点
,直线
的参数方程为
为参数),以坐标原点为极点,以
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的直角坐标方程;
(2)若直线
与曲线
相交于不同的两点
是线段
的中点,当
时,求
的值.
【答案】(1)
;(2)
.
【解析】
(1)在已知极坐标方程两边同时乘以ρ后,利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2可得曲线C的直角坐标方程;
(2)联立直线l的参数方程与x2=4y由韦达定理以及参数的几何意义和弦长公式可得弦长与已知弦长相等可解得.
解:(1)在ρ+ρcos2θ=8sinθ中两边同时乘以ρ得ρ2+ρ2(cos2θ﹣sin2θ)=8ρsinθ,
∴x2+y2+x2﹣y2=8y,即x2=4y,
所以曲线C的直角坐标方程为:x2=4y.
(2)联立直线l的参数方程与x2=4y得:(cosα)2t2﹣4(sinα)t+4=0,
设A,B两点对应的参数分别为t1,t2,
由△=16sin2α﹣16cos2α>0,得sinα>
,
t1+t2=
,由|PM|=
,
所以20sin2α+9sinα﹣20=0,解得sinα=
或sinα=﹣
(舍去),
所以sinα=
.
【题目】金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生.新生接待其实也是和社会沟通的一个平台.校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,统计数据如下:
愿意 | 不愿意 | |
男生 | 60 | 20 |
女士 | 40 | 40 |
(1)根据上表说明,能否有99%把握认为愿意参加新生接待工作与性别有关;
(2)现从参与问卷调查且愿意参加新生接待工作的学生中,采用按性别分层抽样的方法,选取10人.若从这10人中随机选取3人到火车站迎接新生,设选取的3人中女生人数为
,写出
的分布列,并求
.
附:
,其中
.
| 0.05 | 0.01 | 0.001 |
| 3.841 | 6.635 | 10.828 |