题目内容

11.过双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F作斜率为1的直线,该直线与双曲线的两条渐近线的交点分别为B,C,若$\overrightarrow{FB}=2\overrightarrow{BC}$,则双曲线的离心率是(  )
A.$\sqrt{5}$B.$\sqrt{6}$C.5D.$\sqrt{10}$

分析 设出过焦点的直线方程,与双曲线的渐近线方程联立把B,C表示出来,再$\overrightarrow{FB}=2\overrightarrow{BC}$,求出a,b,c,然后求双曲线的离心率.

解答 解:因为F(c,0),
所以过双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F作斜率为1的直线为:y=x-c,
渐近线的方程是:y=±$\frac{b}{a}$x,
由 $\left\{\begin{array}{l}y=x-c\\ y=\frac{b}{a}x\end{array}\right.$得:B($\frac{ac}{a-b}$,$\frac{bc}{a-b}$),
由 $\left\{\begin{array}{l}y=x-c\\ y=-\frac{b}{a}x\end{array}\right.$得,C($\frac{ac}{a+b}$,-$\frac{bc}{a+b}$),
所以 $\overrightarrow{FB}$=(c-$\frac{ac}{a-b}$,-$\frac{bc}{a-b}$),$\overrightarrow{BC}$=($\frac{ac}{a+b}$-$\frac{ac}{a-b}$,-$\frac{bc}{a+b}$-$\frac{bc}{a-b}$),
又 $\overrightarrow{FB}=2\overrightarrow{BC}$,解得:b=3a,
所以由a2+b2=c2得,10a2=c2
所以e=$\frac{c}{a}$=$\sqrt{10}$.
故选:D.

点评 本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意两点间距离公式的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网