题目内容

已知{an}是各项均为正数的等差数列,lga1、lga2、lga4成等差数列.又bn=
1
a2n
,n=1,2,3,….
(Ⅰ)证明{bn}为等比数列;
(Ⅱ)如果无穷等比数列{bn}各项的和S=
1
3
,求数列{an}的首项a1和公差d.
(注:无穷数列各项的和即当n→∞时数列前项和的极限)
(1)证明:设{an}中首项为a1,公差为d.
∵lga1,lga2,lga4成等差数列∴2lga2=lga1+lga4∴a22=a1•a4
即(a1+d)2=a1(a1+3d)∴d=0或d=a1
当d=0时,an=a1,bn=
1
a2n
=
1
a1
,∴
bn+1
bn
=1,∴{bn}为等比数列;
当d=a1时,an=na1,bn=
1
a2n
=
1
2na1
,∴
bn+1
bn
=
1
2
,∴{bn}为等比数列.
综上可知{bn}为等比数列.
(2)∵无穷等比数列{bn}各项的和S=
1
3

∴|q|<1,由(1)知,q=
1
2
,d=a1.bn=
1
a2n
=
1
2na1

∴S=
b1
1-q
=
1
a2
1-q
=
1
2a1
1-
1
2
=
1
a1
=
1
3
,∴a1=3.
a1=3
d=3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网