题目内容

已知{an}是各项均为正数的等比数列a1+a2=2(
1
a1
+
1
a2
),a3+a4+a5=64(
1
a3
+
1
a4
+
1
a5

(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=(an+
1
an
2,求数列{bn}的前n项和Tn
分析:(1)由题意利用等比数列的通项公式建立首项a1与公比q的方程,然后求解即可
(2)由bn的定义求出通项公式,在由通项公式,利用分组求和法即可求解
解答:解:(1)设正等比数列{an}首项为a1,公比为q,由题意得:
a1(1+q)=2•
1
a1
1
q
(1+q)
a1q2(1+q+q2)=64•
1
a1q4
(1+q+q2)
?
a12q=2
a12q6=64
?
a1=1
q=2
∴an=2n-1(6分)
(2)bn=(2n-1+
1
2n-1
)
2
=4n-1+(
1
4
)
n-1
+2

∴bn的前n项和Tn=
1(1-4n)
1-4
+
1(1-
1
4n
)
1-
1
4
+2n=
1
3
4n-
4
3
(
1
4
)
n
+2n+1
(12分)
点评:(1)此问重基础及学生的基本运算技能(2)此处重点考查了高考常考的数列求和方法之一的分组求和,及指数的基本运算性质
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网