题目内容
已知{an}是各项均为正数的等差数列,lga1、lga2、lga4成等差数列.又bn=1 |
a2n |
(Ⅰ)证明{bn}为等比数列;
(Ⅱ)如果无穷等比数列{bn}各项的和S=
1 |
3 |
(注:无穷数列各项的和即当n→∞时数列前项和的极限)
分析:(1)设{an}中首项为a1,公差为d.lga1,lga2,lga4成等差数列,把a1和d代入求得d,进而分别看当d=0,整理可得
=1,进而判断出{bn}为等比数列;进而看d=a1时,整理
=
,判断出{bn}为等比数列.
(2)无穷等比数列{bn}各项的和S=
.进而求得q和d,根据等比数列的前n项的和极限,进而得d.
bn+1 |
bn |
bn+1 |
bn |
1 |
2 |
(2)无穷等比数列{bn}各项的和S=
1 |
3 |
解答:(1)证明:设{an}中首项为a1,公差为d.
∵lga1,lga2,lga4成等差数列∴2lga2=lga1+lga4∴a22=a1•a4.
即(a1+d)2=a1(a1+3d)∴d=0或d=a1.
当d=0时,an=a1,bn=
=
,∴
=1,∴{bn}为等比数列;
当d=a1时,an=na1,bn=
=
,∴
=
,∴{bn}为等比数列.
综上可知{bn}为等比数列.
(2)解:∵无穷等比数列{bn}各项的和S=
.
∴|q|<1,由(1)知,q=
,d=a1.bn=
=
∴S=
=
=
=
=
,∴a1=3.
∴
.
∵lga1,lga2,lga4成等差数列∴2lga2=lga1+lga4∴a22=a1•a4.
即(a1+d)2=a1(a1+3d)∴d=0或d=a1.
当d=0时,an=a1,bn=
1 |
a2n |
1 |
a1 |
bn+1 |
bn |
当d=a1时,an=na1,bn=
1 |
a2n |
1 |
2na1 |
bn+1 |
bn |
1 |
2 |
综上可知{bn}为等比数列.
(2)解:∵无穷等比数列{bn}各项的和S=
1 |
3 |
∴|q|<1,由(1)知,q=
1 |
2 |
1 |
a2n |
1 |
2na1 |
∴S=
b1 |
1-q |
| ||
1-q |
| ||
1-
|
1 |
a1 |
1 |
3 |
∴
|
点评:本题主要考查了等比关系的确定.数列与不等式,极限,函数等知识是常考的地方,属于中点.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目