题目内容
已知:|a |
2 |
b |
a |
b |
(1)当向量
a |
b |
a |
b |
(2)当λ=-2时,向量
a |
b |
a |
b |
分析:(1)由已知中
+λ
与λ
+
的夹角为钝角,知(
+λ
)•(λ
+
)<0且
+λ
≠t(λ
+
),(t<0),根据|
|=
,|
|=3,
和
的夹角为45°,可构造一个关于λ的不等式,解不等式即可得到λ的取值范围;
(2)求出当λ=-2时,向量
+λ
与λ
+
的模及数量积,代入向量夹角公式,即可求出向量
+λ
与λ
+
的夹角的余弦值.
a |
b |
a |
b |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
2 |
b |
a |
b |
(2)求出当λ=-2时,向量
a |
b |
a |
b |
a |
b |
a |
b |
解答:解:(1)∵
+λ
与λ
+
的夹角为钝角,知(
+λ
)•(λ
+
)<0且
+λ
≠t(λ
+
),(t<0)
由(
+λ
)•(λ
+
)<0得3λ2+11λ+3<0
解得
<λ<
;
当
+λ
=t(λ
+
),(t<0)时,由
与
不共线知
,解得λ=t=-1(1舍去)
所以λ的取值范围是
<λ<-1或-1<λ<
;
(2)当λ=-2时|
+λ
|=|
-2
|=
=
=
|λ
+
|=|-2
+
|=
=
=
(
+λ
)•(λ
+
)=(
-2
)•(-2
+
)=-2
2-2
2+5
=-7
所以 cosθ=
=-
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
由(
a |
b |
a |
b |
解得
-11-
| ||
6 |
-11+
| ||
6 |
当
a |
b |
a |
b |
a |
b |
|
所以λ的取值范围是
-11-
| ||
6 |
-11+
| ||
6 |
(2)当λ=-2时|
a |
b |
a |
b |
(
|
|
26 |
|λ
a |
b |
a |
b |
(-2
|
4
|
5 |
(
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
所以 cosθ=
-7 | ||||
|
7 |
130 |
130 |
点评:本题考查的知识点是平面向量的综合应用,其中(1)中易忽略向量
+λ
与λ
+
反向的情况,而错解为
<λ<
.
a |
b |
a |
b |
-11-
| ||
6 |
-11+
| ||
6 |
练习册系列答案
相关题目
已知向量
=(2,y),
=(-1,y),若2
与
垂直,则y等于( )
a |
b |
a |
b |
A、-
| ||
B、
| ||
C、±
| ||
D、2 |