题目内容
已知函数
(
为常数,
且
),且数列
是首项为4,公差为2的等差数列。
(Ⅰ)求证:数列
是等比数列;
(Ⅱ)若
,当
时,求数列
的前n项和
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519102717.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519118312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519133423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519165392.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519180656.png)
(Ⅰ)求证:数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519196481.png)
(Ⅱ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519211673.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519227458.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519243491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519243388.png)
(Ⅰ)详见解析;(Ⅱ)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519258662.png)
试题分析:(Ⅰ)数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519196481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519289481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519383277.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519180656.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519430770.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519445999.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519461568.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519289481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519196481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519211673.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519227458.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519243491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519383277.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519243388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519243491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519461568.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240325196641121.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519258662.png)
试题解析:(Ⅰ)由题意知f(an)=4+(n-1)×2=2n+2, (2分)
即logkan=2n+2,∴an=k2n+2, (3分)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240325196951084.png)
∵常数k>0且k≠1,∴k2为非零常数,
∴数列{an}是以k4为首项,k2为公比的等比数列。 (6分)
(Ⅱ)由(1)知,bn=anf(an)=k2n+2·(2n+2),
当k=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519711311.png)
∴Sn=2·23+3·24+4·25++(n+1)·2n+2, ①
2Sn=2·24+3·25++n·2n+2+(n+1)·2n+3, ② (10分)
②-①,得Sn=―2·23―24―25――2n+2+(n+1)·2n+3
=―23―(23+24+25++2n+2)+(n+1)·2n+3,
∴Sn=―23―
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032519726670.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目