题目内容

【题目】设{an}和{bn}是两个等差数列,记cn=max{b1﹣a1n,b2﹣a2n,…,bn﹣ann}(n=1,2,3,…),其中max{x1 , x2 , …,xs}表示x1 , x2 , …,xs这s个数中最大的数.(13分)
(1)若an=n,bn=2n﹣1,求c1 , c2 , c3的值,并证明{cn}是等差数列;
(2)证明:或者对任意正数M,存在正整数m,当n≥m时, >M;或者存在正整数m,使得cm , cm+1 , cm+2 , …是等差数列.

【答案】
(1)

解: a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,

当n=1时,c1=max{b1﹣a1}=max{0}=0,

当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,

当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,

下面证明:对n∈N*,且n≥2,都有cn=b1﹣na1

当n∈N*,且2≤k≤n时,

则(bk﹣nak)﹣(b1﹣na1),

=[(2k﹣1)﹣nk]﹣1+n,

=(2k﹣2)﹣n(k﹣1),

=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,

则(bk﹣nak)﹣(b1﹣na1)≤0,则b1﹣na1≥bk﹣nak

因此,对n∈N*,且n≥2,cn=b1﹣na1=1﹣n,

cn+1﹣cn=﹣1,

∴c2﹣c1=﹣1,

∴cn+1﹣cn=﹣1对n∈N*均成立,

∴数列{cn}是等差数列;


(2)

证明:设数列{an}和{bn}的公差分别为d1,d2,下面考虑的cn取值,

由b1﹣a1n,b2﹣a2n,…,bn﹣ann,

考虑其中任意bi﹣ain,(i∈N*,且1≤i≤n),

则bi﹣ain=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,

=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),

下面分d1=0,d1>0,d1<0三种情况进行讨论,

①若d1=0,则bi﹣ain═(b1﹣a1n)+(i﹣1)d2

当若d2≤0,则(bi﹣ain)﹣(b1﹣a1n)=(i﹣1)d2≤0,

则对于给定的正整数n而言,cn=b1﹣a1n,此时cn+1﹣cn=﹣a1

∴数列{cn}是等差数列;

当d1>0,(bi﹣ain)﹣(bn﹣ann)=(i﹣1)d2≤0,

则对于给定的正整数n而言,cn=bn﹣ann=bn﹣a1n,

此时cn+1﹣cn=d2﹣a1

∴数列{cn}是等差数列;

此时取m=1,则c1,c2,…,是等差数列,命题成立;

②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,

故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,

则当n≥m时,(bi﹣ain)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),

因此当n≥m时,cn=b1﹣a1n,

此时cn+1﹣cn=﹣a1,故数列{cn}从第m项开始为等差数列,命题成立;

③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,

故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,

则当n≥s时,(bi﹣ain)﹣(bn﹣ann)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),

因此,当n≥s时,cn=bn﹣ann,

此时= =﹣an+

=﹣d2n+(d1﹣a1+d2)+

令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,

下面证明: =An+B+ 对任意正整数M,存在正整数m,使得n≥m, >M,

若C≥0,取m=[ +1],[x]表示不大于x的最大整数,

当n≥m时, ≥An+B≥Am+B=A[ +1]+B>A +B=M,

此时命题成立;

若C<0,取m=[ ]+1,

当n≥m时,

≥An+B+ ≥Am+B+C>A +B+C ≥M﹣C﹣B+B+C=M,

此时命题成立,

因此对任意正数M,存在正整数m,使得当n≥m时, >M;

综合以上三种情况,命题得证.


【解析】(1.)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1 , c2 , c3;由(bk﹣nak)﹣(b1﹣na1)≤0,则b1﹣na1≥bk﹣nak , 则cn=b1﹣na1=1﹣n,cn+1﹣cn=﹣1对n∈N*均成立;
(2.)由bi﹣ain=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得cm , cm+1 , cm+2 , …是等差数列;设 =An+B+ 对任意正整数M,存在正整数m,使得n≥m, >M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时, >M.
【考点精析】根据题目的已知条件,利用等差关系的确定的相关知识可以得到问题的答案,需要掌握如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即=d ,(n≥2,n∈N)那么这个数列就叫做等差数列.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网