题目内容
已知向量
=(cos
x,sin
x),
=(cos
,-sin
),且x∈[
,
π]
(1)求|
+
|的取值范围;
(2)求函数f(x)=
•
-|
+
|的最小值,并求此时x的值.
a |
3 |
2 |
3 |
2 |
b |
x |
2 |
x |
2 |
π |
2 |
3 |
2 |
(1)求|
a |
b |
(2)求函数f(x)=
a |
b |
a |
b |
(1)∵x∈[
,
π],∴-1≤cos2x≤1,
∴|
+
|=
=
.
∴0≤|
+
|≤2. (4分)
(2)∵x∈[
,
π],∴-1≤cosx≤0. …(6分)
∵f(x)=
•
-|
+
|=cos2x-
=2cos2x-1-
=2cos2x+2cosx-1,…(10分)
∴当cosx=-
,即x=
π或x=
π时,f(x)=
•
-|
+
|取最小值-
.…(12分)
π |
2 |
3 |
2 |
∴|
a |
b |
(cos
|
2+2cos2x |
∴0≤|
a |
b |
(2)∵x∈[
π |
2 |
3 |
2 |
∵f(x)=
a |
b |
a |
b |
2+2cos2x |
4cos2x |
∴当cosx=-
1 |
2 |
2 |
3 |
4 |
3 |
a |
b |
a |
b |
3 |
2 |
练习册系列答案
相关题目