ÌâÄ¿ÄÚÈÝ
7£®ÔÚƽÃæÖ±½Ç×ø±êϵÖл³öÏÂÁжþÔªÒ»´Î²»µÈʽ×éµÄ½âËù±íʾµÄÇøÓò£»£¨1£©$\left\{\begin{array}{l}{x¡Ü2}\\{y£¼2x-3}\end{array}\right.$£»
£¨2£©$\left\{\begin{array}{l}{2x+y¡Ü4}\\{x¡Ý0}\\{y¡Ý0}\end{array}\right.$£»
£¨3£©$\left\{\begin{array}{l}{-1¡Üx¡Ü5}\\{-2¡Üy¡Ü3}\\{x+y¡Ü6}\end{array}\right.$£®
·ÖÎö ¸ù¾Ý¶þÔªÒ»´Î²»µÈʽ×é±íʾƽÃæÇøÓò½øÐÐ×÷ͼ¼´¿É£®
½â´ð ½â£º£¨1£©£¨2£©£¨3£©
µãÆÀ ±¾ÌâÖ÷Òª¿¼²é¶þÔªÒ»´Î²»µÈʽ×é±íʾƽÃæÇøÓò£¬±È½Ï»ù´¡£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
15£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=1£¬a2=2£¬ÇÒ$\frac{{a}_{n-1}-{a}_{n}}{{a}_{n-1}}$=$\frac{{a}_{n}-{a}_{n+1}}{{a}_{n}}$£¨n¡Ý2£©£¬ÔòÊýÁÐ{an}µÄÇ°4ÏîºÍµÈÓÚ£¨¡¡¡¡£©
A£® | 18 | B£® | 8 | C£® | 15 | D£® | 17 |
12£®Ò»¸ö¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¼¸ºÎÌåµÄÌå»ýÊÇ£¨¡¡¡¡£©
A£® | $\frac{7¦Ð}{6}$ | B£® | $\frac{5¦Ð}{6}$ | C£® | $\frac{5¦Ð}{3}$ | D£® | $\frac{4¦Ð}{3}$ |
19£®Éèf£¨x£©=$\frac{{e}^{|x|}+x+1}{{e}^{|x|}+1}$ÔÚÇø¼ä[-m£¬m]£¨m£¾0£©ÉϵÄ×î´óֵΪp£¬×îСֵΪq£¬Ôòp+q=£¨¡¡¡¡£©
A£® | 4 | B£® | 3.5 | C£® | 3 | D£® | 2 |
16£®ÒÑ֪˫ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ½¥½üÏßÓëʵÖáµÄ¼Ð½ÇΪ30¡ã£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£® | $\sqrt{2}$ | B£® | $\sqrt{3}$ | C£® | $\frac{2\sqrt{3}}{3}$ | D£® | 2 |