题目内容

16.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线与实轴的夹角为30°,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.2

分析 由双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线与实轴的夹角为30°,推出a、b关系,由此能求出双曲线的离心率.

解答 解:∵双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线与实轴的夹角为30°,
∴a=$\sqrt{3}$b,
∴c=$\sqrt{{a}^{2}+{b}^{2}}$=2b,
∴e=$\frac{c}{a}$=$\frac{2b}{\sqrt{3}b}$=$\frac{2\sqrt{3}}{3}$.
故选:C.

点评 本题考查双曲线的离心率的求法,则基础题,解题时要认真审题,注意双曲线的简单性质的灵活运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网