题目内容
已知△ABC中,,试判断△ABC的形状.
三角形为等腰或直角三角形
解析
(本题满分12分)在中,分别是角的对边,且.(1)求角的大小;(2)若,求的面积.
在中,角A、B、C的对边分别为a、b、c,S是该三角形的面积(1)若,求角B的度数(2)若a=8,B=,S=,求b的值
在△ABC中,角A、B、C所对的边分别是a、b、c,已知c=2,C=.(1)若△ABC的面积等于,求a、b;(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.
某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/时的航行速度匀速行驶,经过t小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.
在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.(1)若c=2,C=,且△ABC的面积为,求a、b的值;(2)若sinC+sin(B-A)=sin2A,试判断△ABC的形状.
在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(1)求角A的大小;(2)若a=6,b+c=8,求△ABC的面积.
△ABC中内角A,B,C的对边分别为a,b,c,已知a=bcos C+csin B.(1)求B;(2)若b=2,求△ABC面积的最大值.
在△ABC中,a,b,c分别为内角A,B,C所对的边长,a=,b=,1+2cos(B+C)=0,求边BC上的高.