题目内容

如图,CDEF是以圆O为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在扇形OCFH内”(点H将劣弧EF二等分),则事件A发生的概率P(A)=
3
8
3
8
分析:分别求出以圆O为圆心,半径为1的圆的面积以及扇形OCFH的面积,利用概率公式,即可求得结论.
解答:解:A表示事件“豆子落在扇形OCFH内”,
∵以圆O为圆心,半径为1的圆的面积为π,扇形OCFH的面积为
π
2
+
π
4
=
3
8
π
∴事件A发生的概率P(A)=
8
π
=
3
8

故答案为:
3
8
点评:几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=
N(A)
N
求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网