题目内容
圆C的极坐标方程化为直角坐标方程为 ,该圆的面积为 .
x2+y2-2x=0 π
此题答案应为:x2+y2-2x=0 π
先在极坐标方程p=2cosθ的两边同乘以ρ,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.
解:将方程p=2cosθ两边都乘以p得:p2=2pcosθ,
化成直角坐标方程为
x2+y2-2x=0.半径为1,面积为π.
故填:x2+y2-2x=0 π.
先在极坐标方程p=2cosθ的两边同乘以ρ,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.
解:将方程p=2cosθ两边都乘以p得:p2=2pcosθ,
化成直角坐标方程为
x2+y2-2x=0.半径为1,面积为π.
故填:x2+y2-2x=0 π.
练习册系列答案
相关题目