题目内容
【题目】提高过江大桥的车辆通行的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)
的函数.当桥上的车流密度达到200辆/千米时,就会造成堵塞,此时车流速度为0;当
车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,
车流速度是车流密度的一次函数.
(1)当时,求函数的表达式;
(2)如果车流量(单位时间内通过桥上某观测点的车辆数) (单位:辆/小时),那么当车流密度为多大时,车流量可以达到最大,并求出最大值.(精确到辆/小时).
【答案】(1);(2) .
【解析】试题分析:
本题考查函数模型在实际中的应用以及分段函数最值的求法。(1)根据题意用分段函数并结合待定系数法求出函数的关系式。(2)首先由题意得到的解析式,再根据分段函数最值的求得求得最值即可。
试题解析:
(1)由题意:当时, ;
当时,设
由已知得 解得
∴。
综上可得
(2)依题意并由(1)可得
①当时, 为增函数,
∴当时, 取得最大值,且最大值为1200 。
②当时, ,
∴当时, 取得最大值,且最大值为。
所以的最大值为。
故当车流密度为100辆/千米时,车流量可以达到最大,且大值为3333辆/小时.
【题目】濮阳市黄河滩区某村2010年至2016年人均纯收入(单位:万元)的数据如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代号x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(Ⅰ)求y关于x的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2010年至2016年该村人均纯收入的变化情况,并预测该村2017年人均纯收入.
附:回归直线的斜率和截距的最小乘法估计公式分别为: = , = ﹣ .
【题目】为了考察某种中成药预防流感的效果,抽样调查40人,得到如下数据
患流感 | 未患流感 | |
服用药 | 2 | 18 |
未服用药 | 8 | 12 |
根据表中数据,通过计算统计量K2= ,并参考以下临界数据:
P(K2>k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.828 |
若由此认为“该药物有效”,则该结论出错的概率不超过( )
A.0.05
B.0.025
C.0.01
D.0.005