题目内容
【题目】设函数(且),当点是函数图象上的点时,点是函数图象上的点.
(1)写出函数的解析式;
(2)把的图象向左平移个单位得到的图象,函数,是否存在实数,使函数的定义域为,值域为.如果存在,求出的值;如果不存在,说明理由;
(3)若当时,恒有,试确定的取值范围.
【答案】(1) (2) (3)
【解析】试题分析:(1)设点Q的坐标为,利用=x-2a, =-y,转化x=+2a,y=-.通过点P(x,y)在函数y=loga(x-3a)图象上,代入即可得到函数y=g(x)的解析式;
(2) ,因为,故, 在上单调递增, ,即为的两相异的非负的实数,解方程即得的值;
(3) 通过,求出的最大值,利用最大值≤1,即可确定的取值范围;
试题解析:
(1)解:设点的坐标为,
则,即.
点在函数图象上,
,即,
.
(2),
,故
在上单调递增, ,即为的两相异的非负的实数
即,解得.
(3)函数,
由题意,则,
又,且
,
,
又对称轴为,
,则在上为增函数,
函数在上为减函数,
从而,
又,则,
.
【题目】为迎接党的“十九大”胜利召开与响应国家交给的“提速降费”任务,某市移动公司欲提供新的资费套餐(资费包含手机月租费、手机拨打电话费与家庭宽带上网费)。其中一组套餐变更如下:
原方案资费
手机月租费 | 手机拨打电话 | 家庭宽带上网费(50M) |
18元/月 | 0.2元/分钟 | 50元/月 |
新方案资费
手机月租费 | 手机拨打电话 | 家庭宽带上网费(50M) |
58元/月 | 前100分钟免费, 超过部分元/分钟(>0.2) | 免费 |
(1)客户甲(只有一个手机号和一个家庭宽带上网号)欲从原方案改成新方案,设其每月手机通话时间为分钟(),费用原方案每月资费-新方案每月资费,写出关于的函数关系式;
(2)经过统计,移动公司发现,选这组套餐的客户平均月通话时间分钟,为能起到降费作用,求的取值范围。