题目内容
2.已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0,现给出如下结论;①f(x)≤1.;②f(x)≥3;③f(0)f(1)<0;④f(0)f(3)>0;⑤abc<4
其中正确结论的序号是③④⑤.
分析 根据f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0,确定函数的极值点及a、b、c的大小关系,由此可得结论.
解答 解:求导函数可得f′(x)=3x2-12x+9=3(x-1)(x-3),
∴当1<x<3时,f′(x)<0;当x<1,或x>3时,f′(x)>0,
所以f(x)的单调递增区间为(-∞,1)和(3,+∞),单调递减区间为(1,3),
所以f(x)极大值=f(1)=1-6+9-abc=4-abc,f(x)极小值=f(3)=27-54+27-abc=-abc
要使f(x)=0有三个解a、b、c,那么结合函数f(x)草图可知:
a<1<b<3<c
及函数有个零点x=b在1~3之间,所以f(1)=4-abc>0,且f(3)=-abc<0
所以0<abc<4
∵f(0)=-abc
∴f(0)<0
∴f(0)f(1)<0,f(0)f(3)>0
故答案为:③④⑤.
点评 本题考查函数的零点、极值点,解不等式,综合性强,利用数形结合可以使本题直观.
练习册系列答案
相关题目
12.函数f(x)=$\frac{2}{{{2^x}-2}}$的值域为( )
A. | (-∞,-1) | B. | (-1,0)∪(0,+∞) | C. | (-1,+∞) | D. | (-∞,-1)∪(0,+∞) |
10.在△ABC中,bcosA=acosB,则三角形的形状为( )
A. | 等腰三角形 | B. | 锐角三角形 | C. | 直角三角形 | D. | 钝角三角形 |
17.某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据得线性回归方程$\widehat{y}$=bx+a中b=-2,预测当气温为-4℃时,用电量的度数约为( )
气温(℃) | 18 | 13 | 10 | -1 |
用电量(度) | 24 | 34 | 38 | 64 |
A. | 70 | B. | 69 | C. | 68 | D. | 67 |
7.已知函数f(x)=sin(ωx+$\frac{π}{3}}$)的最小正周期为π,则函数f(x)的图象可以由函数y=sin2x的图象( )
A. | 向左平移$\frac{π}{6}$个单位 | B. | 向右平移$\frac{π}{6}$个单位 | ||
C. | 向左平移$\frac{π}{3}$个单位 | D. | 向右平移$\frac{π}{3}$个单位 |
14.观察数列1,2,2,3,3,3,4,4,4,4,…的特点,问第100项为( )
A. | 10 | B. | 14 | C. | 13 | D. | 100 |