题目内容

设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=-b,其中常数a,b∈R.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程.
(Ⅱ)设g(x)=f′(x)e-x.求函数g(x)的极值.
(I)∵f(x)=x3+ax2+bx+1∴f'(x)=3x2+2ax+b.令x=1,得f'(1)=3+2a+b=2a,解得b=-3
令x=2,得f'(2)=12+4a+b=-b,因此12+4a+b=-b,解得a=-
3
2
,因此f(x)=x3-
3
2
x2-3x+1
∴f(1)=-
5
2

又∵f'(1)=2×(-
3
2
)=-3,
故曲线在点(1,f(1))处的切线方程为y-(-
5
2
)=-3(x-1),即6x+2y-1=0.

(II)由(I)知g(x)=(3x2-3x-3)e-x
从而有g'(x)=(-3x2+9x)e-x
令g'(x)=0,则x=0或x=3
∵当x∈(-∞,0)时,g'(x)<0,
当x∈(0,3)时,g'(x)>0,
当x∈(3,+∞)时,g'(x)<0,
∴g(x)=(3x2-3x-3)e-x在x=0时取极小值g(0)=-3,在x=3时取极大值g(3)=15e-3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网