题目内容
18.已知A={x|y=$\sqrt{1-2x}$+$\frac{2x-1}{\sqrt{x+2}}$},B={y|y=x2-2x-1},则A∩B是( )A. | [-2,$\frac{1}{2}$] | B. | (-2,$\frac{1}{2}$] | C. | [-2,$\frac{1}{2}$) | D. | (-2,$\frac{1}{2}$) |
分析 求出A中x的范围确定出A,求出B中y的范围确定出B,找出A与B的交集即可.
解答 解:由A中函数y=$\sqrt{1-2x}$+$\frac{2x-1}{\sqrt{x+2}}$,得到$\left\{\begin{array}{l}{1-2x≥0}\\{x+2>0}\end{array}\right.$,
解得:-2<x≤$\frac{1}{2}$,即A=(-2,$\frac{1}{2}$],
由B中y=x2-2x-1=(x-1)2-2≥-2,即B=[-2,+∞),
则A∩B=(-2,$\frac{1}{2}$],
故选:B.
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
8.已知动点A在圆x2+y2=1上移动,点B(3,0),则AB的中点的轨迹方程是( )
A. | (x+3)2+y2=4 | B. | (x-3)2+y2=1 | C. | (2x-3)2+4y2=1 | D. | (x+$\frac{3}{2}$)2+y2=$\frac{1}{2}$ |
9.小明要给刚结识的朋友小林打电话,他只记住了电话号码8个数字的前面5个数字的顺序,后3个数字是3、6、8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是( )
A. | $\frac{1}{12}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{3}$ |
6.某园林局对1 000株树木的生长情况进行调查,其中杉树600株,槐树400株.现用分层抽样方法从这1 000株树木中随机抽取100株,杉树与槐树的树干周长(单位:cm)的抽查结果如表:
(1)求x,y值;
(2)树干周长在30cm到40cm之间的4株槐树有1株患虫害,现要对这4株树逐一进行排查直至找出患虫害的树木为止,求排查的树木恰好为2株的概率.
树干周长(单位:cm) | [30,40) | [40,50) | [50,60) | [60,70) |
杉树 | 6 | 19 | 21 | x |
槐树 | 4 | 20 | y | 6 |
(2)树干周长在30cm到40cm之间的4株槐树有1株患虫害,现要对这4株树逐一进行排查直至找出患虫害的树木为止,求排查的树木恰好为2株的概率.
3.直线xsinα+y+2=0的倾斜角的取值范围是( )
A. | [0,π) | B. | [0,$\frac{π}{4}$]∪[$\frac{3}{4}$π,π) | C. | [0,$\frac{π}{4}$] | D. | [0,$\frac{π}{4}$]∪($\frac{π}{2}$,π) |
7.曲线y=1+$\sqrt{4-{x}^{2}}$(x∈[-2,2])与直线y=k(x-2)+4有两个公共点时,k的取值范围是( )
A. | (0,$\frac{5}{12}$) | B. | [$\frac{1}{4}$,$\frac{1}{3}$) | C. | ($\frac{5}{12}$,+∞) | D. | ($\frac{5}{12}$,$\frac{3}{4}$] |
8.在△ABC中,角$C=\frac{π}{3}$,边AB=1,则△ABC周长的取值范围是( )
A. | (2,3] | B. | [1,3] | C. | (0,2] | D. | (2,5] |