题目内容

已知双曲线的离心率为,若它的一条准线与抛物线y2=4x的准线重合.设双曲线与抛物线的一个交点为P,抛物线的焦点为F,则|PF|=   
【答案】分析:由离心率求得a和c的关系,进而根据双曲线方程准线与抛物线y2=4x的准线重合,得其准线方程,求得a和c的关系,进而求得a,c,则求得b,双曲线方程可得,进而把抛物线和双曲线方程联立求得交点坐标,则点到焦点的距离可求.
解答:解:由e=,得 =
由一条准线与抛物线y2=4x的准线重合,
得准线为x=-1,
所以 =1,
故a=,c=3,b=
所以双曲线方程为 =1,左准线方程为:x=-1,
得交点为(3,±),
∵P到抛物线的焦点F的距离等于到其准线的距离,
∴|PF|=3-(-1)=4
则|PF|=4
故答案为:4.
点评:本题主要考查了抛物线的简单性质,考查了抛物线与双曲线的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网