题目内容
【题目】在平面直角坐标系中,点为椭圆:的右焦点,过的直线与椭圆交于、两点,线段的中点为.
(1)求椭圆的方程;
(2)若直线、斜率的乘积为,两直线,分别与椭圆交于、、、四点,求四边形的面积.
【答案】(1);(2).
【解析】
(1)设,,,,利用点差法求出直线的斜率为:,又直线的斜率为:,所以,得到,再结合,,即可求出,,的值,从而求得椭圆的方程;
(2)设点,,,,由题意可知,当直线的斜率不存在时,易求四边形的面积,当直线的斜率存在时,设直线的方程为:,与椭圆方程联立,利用韦达定理代入得,再由弦长公式和点到直线距离公式求得,由椭圆的对称性可知:四边形的面积为,从而得到边形的面积为.
(1)由题意可知,,设,,∴,,
又∵点,在椭圆上,∴,两式相减得:,
∴,即直线的斜率为:,
又∵直线过右焦点,过点,∴直线的斜率为:,
∴,∴,又∵,,∴,,∴椭圆的方程为:;
(2)设点,,
由题意可知,,即,①当直线的斜率不存在时,显然,,
∴,又,∴,,
∴四边形的面积,
②当直线的斜率存在时,设直线的方程为:,
联立方程,消去得:,
∴,,
∴,
∵,∴,
整理得:,
由弦长公式得:,
原点(0,0)到直线的距离,
∴,
由椭圆的对称性可知:四边形的面积为,
综上所述,四边形的面积为.
【题目】随机调查某城市80名有子女在读小学的成年人,以研究晚上八点至十点时间段辅导子女作业与性别的关系,得到下面的数据表:
是否辅导 性别 | 辅导 | 不辅导 | 合计 |
男 | 25 | 60 | |
女 | |||
合计 | 40 | 80 |
(1)请将表中数据补充完整;
(2)用样本的频率估计总体的概率,估计这个城市有子女在读小学的成人女性晚上八点至十点辅导子女作业的概率;
(3)根据以上数据,能否有99%以上的把握认为“晚上八点至十点时间段是否辅导子女作业与性别有关?”.
参考公式:,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
【题目】统计与人类活动息息相关,我国从古代就形成了一套关于统计和整理数据的方法.据宋元时代学者马端临所著的《文献通考》记载,宋神宗熙宁年间(公元1068-1077年),天下诸州商税岁额:四十万贯以上者三,二十万贯以上者五,十万贯以上者十九……五千贯以下者七十三,共计三百十一.由这段内容我们可以得到如下的统计表格:
分组(万贯) | 合计 | ||||||||
合计 | 73 | 35 | 95 | 51 | 30 | 19 | 5 | 3 | 311 |
则宋神宗熙宁年间各州商税岁额(单位:万贯)的中位数大约为( )
A.0.5B.2C.5D.10
【题目】某省即将实行新高考,不再实行文理分科.某校为了研究数学成绩优秀是否对选择物理有影响,对该校2018级的1000名学生进行调查,收集到相关数据如下:
(1)根据以上提供的信息,完成列联表,并完善等高条形图;
选物理 | 不选物理 | 总计 | |
数学成绩优秀 | |||
数学成绩不优秀 | 260 | ||
总计 | 600 | 1000 |
(2)能否在犯错误的概率不超过0.05的前提下认为数学成绩优秀与选物理有关?
附:
临界值表:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |