题目内容

AB |
a |
AC |
b |
a |
b |
AO |
分析:延长AO交BC于点E,利用重心定理及其向量的平行四边形法则可得:点E为BC的中点,
=
,
=
(
+
),即可得出.
AO |
2 |
3 |
AE |
AE |
1 |
2 |
AB |
AC |
解答:解:延长AO交BC于点E,则点E为BC的中点.
∴
=
,
=
(
+
).
∴
=
×
×(
+
)=
+
.
∴
AO |
2 |
3 |
AE |
AE |
1 |
2 |
AB |
AC |
∴
AO |
2 |
3 |
1 |
2 |
a |
b |
1 |
3 |
a |
1 |
3 |
b |
点评:熟练掌握重心定理及其向量的平行四边形法则是解题的关键.

练习册系列答案
相关题目

DC |
A、
| ||||||
B、
| ||||||
C、-
| ||||||
D、-
|