题目内容
已知⊙P的半径等于6,圆心是抛物线y2=8x的焦点,经过点M(1,-2)的直线l将⊙P分成两段弧,当优弧与劣弧之差最大时,直线l的方程为( )
A.x+2y+3=0 | B.x-2y-5=0 |
C.2x+y=0 | D.2x-y-5=0 |
A
解析
练习册系列答案
相关题目
己知抛物线的焦点F恰好是双曲线的右焦点,且两条曲线的交点的连线过点F,则该双曲线的离心率为( )
A.+1 | B.2 | C. | D.-1 |
设椭圆的左、右焦点分别为是上的点 ,,则椭圆的离心率为( )
A. | B. | C. | D. |
在中,,给出满足的条件,就能得到动点的轨迹方程,下表给出了一些条件及方程:
条件 | 方程 |
①周长为10 | |
②面积为10 | |
③中, |
A. 、、 B. 、、
C. 、、 D. 、、
将两个顶点在抛物线y2=2px(p>0)上,另一个顶点是此抛物线焦点的正三角形个数记为n,则( )
A.n=0 | B.n=1 | C.n=2 | D.n≥3 |