题目内容
某学校100名学生期中考试语文成绩的频率分布直方图如下右图所示,其中成绩分组区间是:,,,,。
求图中a的值;
根据频率分布直方图,估计这100名学生语文成绩的平均分;
若这100名学生语文成绩某些分数段的人数与数学成绩相应分数段的人数
之比如下表所示,求数学成绩在之外的人数。
分数段 | ||||
x:y | 1:1 | 2:1 | 3:4 | 4:5 |
(1); (2)73; (3)10
解析试题分析:(1)由频率分布直方图的性质可10(2a+0.02+0.03+0.04)=1,解方程即可得到a的值;(2)由平均数加权公式可得平均数为55×0.05+65×0.4+75×0.3+85×0.2+95×0.05,计算出结果既得.(3)先求出数学成绩在[50,90)之内的人数,用100减去此数,得出结果.解题的关键是理解频率分布直方图,熟练掌握频率分布直方图的性质,且能根据所给的数据建立恰当的方程求解.
试题解析:(1)、 2分
解得 3分
(2)、50-60段语文成绩的人数为:
60-70段语文成绩的人数为:4分
70-80段语文成绩的人数为:
80-90段语文成绩的人数为:
90-100段语文成绩的人数为: 5分
7分
=73 8分
(3)、依题意:
50-60段数学成绩的人数=50-60段语文成绩的人数为=5人 9分
60-70段数学成绩的的人数为=50-60段语文成绩的人数的一半= 10分
70-80段数学成绩的的人数为= 11分
80-90段数学成绩的的人数为= 12分
90-100段数学成绩的的人数为= 13分
考点:1.考查频率分布估计总体分布;2.频率分布直方图.
据《中国新闻网》10月21日报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查(若所选择的在校学生的人数低于被调查人群总数的80%,则认为本次调查“失效”),就“是否取消英语听力”的问题,调查统计的结果如下表:
| 应该取消 | 应该保留 | 无所谓 | ||
在校学生 | 2100人 | 120人 | y人 | ||
社会人士 | 600人 | x人 | z人 |
(Ⅰ)现用分层抽样的方法在所有参与调查的人中抽取360人进行深入访谈,问应在持“无所谓”态度的人中抽取多少人?
(Ⅱ)已知y≥657,z≥55,求本次调查“失效”的概率.
为预防H7N9病毒爆发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:
分组 | A组 | B组 | C组 |
疫苗有效 | 673 | a | b |
疫苗无效 | 77 | 90 | c |
(I)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取样本多少个?
(II)已知b≥465,c ≥30,求通过测试的概率
改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村2001到2005年五年间每年考入大学的人数,为了方便计算,2001年编号为1,2002年编号为2,……,2005年编号为5,数据如下:
年份(x) | 1 | 2 | 3 | 4 | 5 |
人数(y) | 3 | 5 | 8 | 11 | 13 |
(2)根据这年的数据,利用最小二乘法求出关于的回归方程,并计算第年的估计值。
参考:用最小二乘法求线性回归方程系数公式
为了对某课题进行研究,用分层抽样方法从三所科研单位A、B、C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人):
科研单位 | 相关人数 | 抽取人数 |
A | 16 | |
B | 12 | 3 |
C | 8 |
(Ⅱ)若从科研单位A、C抽取的人中选2人作专题发言,求这2人都来自科研单位A的概率.
某校高三期末统一测试,随机抽取一部分学生的数学成绩分组统计如下表:
(Ⅰ)求出表中、、、的值,并根据表中所给数据在下面给出的坐标系中画出频率分布直方图;
分组 | 频数 | 频率 |
合计 |
(Ⅱ)若全校参加本次考试的学生有600人,试估计这次测试中全校成绩在分以上的人数;
(Ⅲ)若该校教师拟从分数不超过60的学生中选取2人进行个案分析,求被选中2人分数不超过30分的概率.
某校为了解高三年级不同性别的学生对体育课改上自习课的态度(肯定还是否定),进行了如下的调查研究.全年级共有名学生,男女生人数之比为,现按分层抽样方法抽取若干名学生,每人被抽到的概率均为.
(1)求抽取的男学生人数和女学生人数;
(2)通过对被抽取的学生的问卷调查,得到如下列联表:
| 否定 | 肯定 | 总计 |
男生 | | 10 | |
女生 | 30 | | |
总计 | | | |
②能否有的把握认为态度与性别有关?
(3)若一班有名男生被抽到,其中人持否定态度,人持肯定态度;二班有名女生被抽到,其中人持否定态度,人持肯定态度.
现从这人中随机抽取一男一女进一步询问所持态度的原因,求其中恰有一人持肯定态度一人持否定态度的概率.
解答时可参考下面临界值表:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |