题目内容
【题目】已知函数是奇函数,且时,有,,则不等式的解集为____.
【答案】
【解析】
根据条件构造函数g(x)=f(x)﹣x,判断函数g(x)的奇偶性和单调性,结合函数奇偶性和单调性的性质进行转化求解即可.
由x﹣3≤f(x)≤x等价为﹣3≤f(x)﹣x≤0
设g(x)=f(x)﹣x,
又由函数f(x)是定义在R上的奇函数,则有f(﹣x)=﹣f(x),
则有g(﹣x)=f(﹣x)﹣(﹣x)=﹣f(x)+x=﹣[f(x)﹣x]=﹣g(x),
即函数g(x)为R上的奇函数,
则有g(0)=0;
又由对任意0≤x1<x2时,有1,
则1,
∵1,
∴1<0,
即g(x)在[0,+∞)上为减函数,
∵g(x)是奇函数,
∴g(x)在(﹣∞,+∞)上为减函数,
∵f(﹣2)=1,∴g(﹣2)=f(﹣2)﹣(﹣2)=1+2=3;
g(2)=﹣3,g(0)=f(0)﹣0=0,
则﹣3≤f(x)﹣x≤0等价为g(2)≤g(x)≤g(0),
∵g(x)是减函数,
∴0≤x≤2,
即不等式x﹣3≤f(x)≤x的解集为[0,2];
故答案为:[0,2].
【题目】中学为研究学生的身体素质与体育锻炼时间的关系,对该校200名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼的时间/分钟 | ||||||
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
将学生日均体育锻炼时间在的学生评价为“锻炼达标”.
(1)请根据上述表格中的统计数据填写下面的列联表;
锻炼不达标 | 锻炼达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
并通过计算判断,是否能在犯错误的概率不超过0.025的前提下认为“锻炼达标”与性别有关?
(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出10人,进行体育锻炼体会交流,
(i)求这10人中,男生、女生各有多少人?
(ii)从参加体会交流的10人中,随机选出2人作重点发言,记这2人中女生的人数为,求的分布列和数学期望.
参考公式:,其中.
临界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |